
UNIVERSITY OF CAPE TOWN

Self-Adapting Simulated Artificial Societies

by

Brandon Gower-Winter

A dissertation submitted in partial fulfillment for the
degree of Masters in Computer Science

in the
Faculty of Science

Department of Computer Science

November 2022

Declaration of Authorship

I, Brandon Gower-Winter, declare that this dissertation titled, ‘Self-Adapting Simulated

Artificial Societies’ and the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree at

this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

11 November 2022

Abstract

Agent-Based Models (ABM) are computational models that utilize autonomous agents

to interact and adapt to the environments in which they occupy. They are used in fields

ranging from Economics to Ecology. More recently, ABM are being used in Computa-

tional Archaeology to aid in explaining the complex social phenomena that gave rise to

ancient societies all over the world.

Despite their potential, ABM are limited by the fact their agents are rarely adaptive

despite adaptability often touted as one of Agent-Based Modelling’s greatest strengths.

In this work we remedy this by investigating whether Machine Learning (ML) algorithms

can be used as adaptive mechanisms for Agent-based Models simulating complex social

phenomena. We aim to do this by comparing ML agents, developed using Reinforcement

Learning and two Evolutionary Algorithms as adaptive-mechanisms, to rule-based agents

typically found in contemporary literature.

To achieve this, we create NeoCOOP, an Agent-Based Model designed to simulate the

complex social phenomena that arise from resource sharing agents in ancient societies.

By conducting scenario experimentation, we examined the adaptive capacity of our four

agent-types by measuring their ability to maintain both population and resources levels

in a virtual re-creation of Ancient Egypt during the Predynastic Period. Our results

indicate that our ML agents (Utility and IE) perform better or on par with even complex

rule-based agents (Traditional and RBAdaptive). The IE agent-type ranked first and was

the most adaptive agent-type. The Utility and RBAdaptive agents jointly ranked second

and the Traditional agent ranked last.

Overall, the findings of this work clearly show that adaptive-agents are more suited

to modelling the dynamics of complex environments than their rule-based counterparts.

More specifically, our results demonstrate that ML algorithms are particularly well suited

as these adaptive mechanisms given that they not only allowed our agents to maintain

high population and resource levels, they facilitated the emergence of additional emergent

phenomena such as resource acquisition strategy specialization. It is our hope that the

findings presented in this work pushes the state of the art such that future research

endeavours seek to use truly adaptive-agents in their complex Archaeological ABM.

Acknowledgements

I would like to thank Tristan, Natelie, Eric, Ryan and Stephanie for their support during

this research endeavour.

I would also like to thank my supervisor Associate Professor Geoff Nitschke for the

guidance and constructive criticism he provided over the course of this dissertation.

iii

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

List of Figures x

List of Tables xiii

Abbreviations xvi

1 Introduction 1
1.1 Motivations . 2
1.2 Research Questions . 5
1.3 Contributions . 7
1.4 Outline . 7

2 Background and Related Work 8
2.1 Agent-Based Modelling . 9

2.1.1 Types of Models . 9
2.1.1.1 Scale-Models . 9
2.1.1.2 Idealized-Models . 10
2.1.1.3 Analogical-Models . 10

2.1.2 What is an Agent? . 11
2.1.3 Environments . 12
2.1.4 Agent-Based Modelling in the Social Sciences 12

2.1.4.1 Agent-Based Modelling in Archaeology 14
2.1.5 Limitations of Agent-Based Models 15

2.1.5.1 ABM Suffer at Scale . 15
2.1.5.2 ABM are Black Boxes . 16
2.1.5.3 ABM are Unpredictable 17
2.1.5.4 ABM often Lack Adaptability 17

2.1.6 Frameworks . 18
2.1.6.1 Mathematical . 19
2.1.6.2 Conceptual . 20

iv

Contents v

2.2 Machine Learning and Agent-Based Models 22
2.2.1 Machine Learning for Adapting Agent Behaviour 22
2.2.2 Complexity Reduction . 24
2.2.3 Parameter Tuning . 25
2.2.4 Surrogate Modelling . 26
2.2.5 Reinforcement Learning . 28
2.2.6 Evolutionary Algorithms . 30
2.2.7 Cultural Algorithms . 31

2.3 A Review of the State of the Art . 34
2.3.1 Agent-Based Modelling in Practice 35
2.3.2 Machine Learning in Agent-Based Modelling 37
2.3.3 ABM Software Packages and Reproducibility 41

2.4 Discussion and Conclusions . 42

3 Methodology 45
3.1 ECAgent - An ECS framework for developing ABM 46

3.1.1 Motivation . 46
3.1.2 Framework . 50

3.1.2.1 Model . 50
3.1.2.2 Agents (Entities) . 51
3.1.2.3 Environment . 52
3.1.2.4 Systems . 53
3.1.2.5 Other Features . 54

3.1.3 Case Study: A Simple Predator-Prey Model 55
3.1.3.1 Validation . 69

3.1.4 Discussion . 71
3.2 Designing Adaptive-Agents using Information Exchange 72

3.2.1 What is Adaptability? . 73
3.2.2 Measuring Adaptability . 74
3.2.3 Adaptation and Information Exchange 76
3.2.4 Formal Definition . 78
3.2.5 Case Study: Stigmergic Adaptation of Foraging Ants 82

3.2.5.1 Validation . 86
3.2.6 Discussion . 89

3.3 The Curios Case of Predynastic Egypt . 93
3.3.1 Background . 93

3.3.1.1 Neolithic Period 6000 - 4600 BC 93
3.3.1.2 Predynastic Period 4650 - 3150 BC 95
3.3.1.3 Early Dynastic Period 3050 - 2686 BC 96

3.3.2 Theories . 96
3.3.2.1 Political Organization of Egypt in the Predynastic Period 97
3.3.2.2 Agriculture and the Origins of the State in Ancient Egypt 99
3.3.2.3 Ancient Egypt: Anatomy of a Civilization 101
3.3.2.4 Process and agency in early state formation 102
3.3.2.5 The Egyptian Predynastic and State Formation 104

3.3.3 Putting it all together . 105
3.3.3.1 Natural Factors: . 106

Contents vi

3.3.3.2 Social Factors: . 106
3.3.3.3 What should an ABM of Predynastic Egypt look like? . . 107

3.4 NeoCOOP - An ABM for Simulating Complex Social Phenomena in An-
cient Societies . 111
3.4.1 Environment . 112
3.4.2 Agent-Types . 115

3.4.2.1 Traditional Agents . 118
3.4.2.2 Rule-Based Adaptive Agents 121
3.4.2.3 Utility Agents . 122
3.4.2.4 Information Exchanging Agents 124

3.4.3 NeoCOOP Systems . 129
3.4.3.1 Global Environment System 129
3.4.3.2 Soil Moisture System . 130
3.4.3.3 Vegetation Growth System 131
3.4.3.4 Resource Acquisition System 133
3.4.3.5 Resource Transfer System 134
3.4.3.6 Resource Consumption System 136
3.4.3.7 Population Management System 137
3.4.3.8 Information Exchange System 139
3.4.3.9 Rule-based Adaptation System 143

3.4.4 Limitations of NeoCOOP . 144
3.5 Summary . 145

4 Experiments and Results 147
4.1 Data Acquisition . 148
4.2 Climate Data Generation . 150
4.3 Validation . 152
4.4 Parameter Tuning and Experiment Setup 152
4.5 Results . 155
4.6 Analysis . 157

4.6.1 Rate of Emergent Agricultural Practices 159
4.6.2 Settlement Density and Population Migration 161
4.6.3 The Importance of Information Throughput 164
4.6.4 Results in the context of Predynastic Egypt 167

4.7 Summary . 169

5 Discussion 171
5.1 Machine Learning vs. Rule-based Agents 172
5.2 Emergent Phenomena . 174
5.3 The Formation of the Ancient Egyptian State 175
5.4 Agent-based Modelling and Simulation Complexity 176
5.5 Summary . 179

6 Conclusions and Future Work 180
6.1 Future Work . 181

Contents vii

A ODD+D Description 182
A.1 Overview . 182

A.1.1 Purpose . 182
A.1.1.1 What is the purpose of the study? 182
A.1.1.2 For whom is the model designed? 182

A.1.2 Entities, State Variables and Scales 183
A.1.2.1 What kinds of entities are in the model? 183
A.1.2.2 By what attributes(i.e. state variables and parameters)

are these entities characterized? 183
A.1.2.3 What are the exogenous factors/drivers of the model? . . 183
A.1.2.4 If applicable, how is space included in the model? 183
A.1.2.5 What are the temporal and spacial resolutions and ex-

tents of the model? . 184
A.1.3 Process Overview and Scheduling 184

A.1.3.1 What entity does what and in what order? 184
A.2 Design Concepts . 184

A.2.1 Theoretical and Empirical Background 184
A.2.1.1 Which general theories concepts, theories or hypotheses

are underlying the model’s design or at the level(s) of the
submodel(s) (apart from the decision model)? What is
the link to complexity and purpose of the model? 184

A.2.1.2 On what assumption is/are agents’ decision model(s) based?185
A.2.1.3 Why is a/are certain decision model(s) chosen? 185
A.2.1.4 If the model/ a submodel is based on empirical data,

where does that data come from? 185
A.2.1.5 At which level of aggregation were the data available? . . 185

A.2.2 Individual Decision Making . 186
A.2.2.1 What are the subjects and objects of decision-making?

On which level of aggregation is decision-making mod-
elled? Are multiple levels of decision making included? . . 186

A.2.2.2 What is the basic rationality behind agents’ decision-
making? Do agents pursue an explicit objective or have
other success criteria? . 186

A.2.2.3 How do agents make their decisions? 186
A.2.2.4 Do the agents adapt their behaviour to changing endoge-

nous and exogenous state variables? And if yes, how? . . 186
A.2.2.5 Do social norms or cultural values play a role in the de-

cision making process? . 187
A.2.2.6 Do spacial aspects play a role in the decision making pro-

cess? . 187
A.2.2.7 Do temporal aspects play a role in the decision making

process? . 187
A.2.2.8 To which extent and how is uncertainty included in the

agents’ decision rules? . 187
A.2.3 Learning . 187

A.2.3.1 Is individual learning included in the decision process?
How do agents’ change their rules over time as conse-
quence of their experience? 187

Contents viii

A.2.3.2 Is collective learning implemented in the model? 188
A.2.4 Individual Sensing . 188

A.2.4.1 What endogenous and exogenous state variables are indi-
viduals assumed to sense and consider in their decisions?
Is their sensing process erroneous? 188

A.2.4.2 What state variables of which other individuals can an
individual perceive? Is the sensing process erroneous? . . 188

A.2.4.3 What is the spatial scale of sensing? 188
A.2.4.4 Are the mechanisms by which agents obtain information

modelled explicitly, or are individuals simply assumed to
know these variables? . 188

A.2.4.5 Are costs for cognition and costs for gathering informa-
tion included in the model? 189

A.2.5 Individual Prediction . 189
A.2.6 Interaction . 189

A.2.6.1 Are interactions among agents and entities assumed as
direct or indirect? . 189

A.2.6.2 On what do the interactions depend? 189
A.2.6.3 If the interactions involve communication, how are such

communications represented? 189
A.2.6.4 If a coordination network exists, how does it affect the

agent behaviour? Is the structure of the network imposed
or emergent? . 189

A.2.7 Collectives . 190
A.2.7.1 Do the individuals form or belong to aggregations that

affect and are affected by the individuals? Are these ag-
gregations imposed by the modeller or do they emerge
during the simulation? . 190

A.2.7.2 How are collectives represented? 190
A.2.8 Heterogeneity . 190

A.2.8.1 Are the agents heterogeneous? If yes, which state vari-
ables and/or processes differ between the agents? 190

A.2.8.2 Are the agents heterogeneous in their decision-making?
If yes, which decision models or decision objects differ
between the agents? . 190

A.2.9 Stochasticity . 191
A.2.9.1 What processes (including initialisation) are modelled by

assuming they are random or partly random? 191
A.2.10 Observation . 192

A.2.10.1 What data are collected from the ABM for testing, un-
derstanding and analysing it, and how and when are they
collected? . 192

A.2.10.2 What key results, outputs or characteristics of the model
are emerging from the individuals? (Emergence) 192

A.3 Details . 192
A.3.1 Implementation Details . 192

A.3.1.1 How has the model been implemented? 192
A.3.1.2 Is the model accessible, and if so where? 192

Contents ix

A.3.2 Initialization . 193
A.3.2.1 What is the initial state of the model world, i.e. at time

t = 0 of a simulation run? 193
A.3.2.2 Is the initialisation always the same, or is it allowed to

vary among simulations? 193
A.3.2.3 Are the initial values chosen arbitrarily or based on data? 193

A.3.3 Input Data . 193
A.3.3.1 Does the model use input from external sources such as

data files or other models to represent processes that
change over time? . 193

A.3.4 Submodels . 194
A.3.4.1 What, in detail, are the submodels that represent the

processes listed in ‘Process overview and scheduling’? . . 194
A.3.4.2 What are the model parameters, their dimensions and

reference values? . 194
A.3.4.3 How were the submodels designed or chosen, and how

were they parameterised and then tested? 194

B Parameter Tuning and Model Analysis 196
B.1 Code Coverage and Validation . 196
B.2 Optuna . 197
B.3 Model Parameters . 199

C GIS Data Preprocessing 201
C.1 Height Map . 201
C.2 Slope Map . 202
C.3 Flood Map . 202
C.4 Soil Texture Maps . 203

D Supplementary Experiments 205
D.1 Experiment Design . 205
D.2 Results and Discussion . 206

Bibliography 208

List of Figures

1.1 Figures showcasing various ABM. 3
1.2 Figures of the various topics surrounding the usage of ABM in Compu-

tational Archaeology. (a) Demonstrates how ABM are used to provide
empirical evidence to support theoretical constructions of snapshot tran-
sitions while (b) illustrates the concept of Equifinality which states that
multiple theories (indicated in green) might explain the transition from
one snapshot to another. 4

2.1 A figure showing the different types of ABM environments. (A) show-
cases a spatially-explicit grid-world environment where black pixels rep-
resent settlements, grey pixels represent farmland and white pixels rep-
resent uninhabited land. (B) showcases a spatially-implicit relationship
graph where agents must be connected if they are to interact with each
other. These relationships may be bidirectional (Agent1 < − > Agent4)
or unidirectional (Agent2− > Agent4) . 13

2.2 Romanowska’s [1] framework for ABM development 19
2.3 A figure showing the PECS [2, 3] Model (A) and a closer look at the

Cognition component (B) . 21
2.4 A "model refinement" design for a ML integrated adaptive ABM as de-

scribed by Rand [4] . 24
2.5 A feed-forward Artificial Neural Network with one hidden layer. 27
2.6 A component view of a CA. (Adapted from Reynolds et al.[5]) 34
2.7 Distribution of primary fields of research for papers reviewed. 35
2.8 Distribution of Machine Learning Algorithms used in papers reviewed. . . 37
2.9 Distributions of Software Packages (Left) and Reproducibility measures

(Right) utilized in reviewed papers. 41

3.1 A figure showing the difficulty of maintaining inheritance trees for certain
types of software. (a) Demonstrates that the Platypus class can’t be cre-
ated without inheriting from both Terrestrial and Marine. (b) Shows the
inelegant solution of creating a third class called TerrestrialMarine which
the Platypus class can inherit from. 47

3.2 The structure of a typical ECS framework. Adapted from Hatledal et al.
[6]. 50

3.3 High-level overview of ECAgent. 51
3.4 A figure showing the difference between regular Components (left) and

cell components (right). A Component is a POD object that stores some
number of properties whereas cell components are stored contiguously as
rows in a Pandas dataframe for a discrete lattice environment of some
arbitrary size. 53

x

List of Figures xi

3.5 UML Diagram of the Simple Predator-Prey Model implemented in ECA-
gent. Classes highlighted in grey are included with ECAgent. 58

3.6 Wolf and Sheep populations simulated over 1000 iterations. 70
3.7 Figures of the Predator-Prey model at t = 0 (a), t = 400 (b) and t = 600

(c). Grass cells are green if they have resources and light yellow if they
are empty. Sheep are represented as black pixels and Wolves are red. . . . 70

3.8 Various types of information exchange networks. (a) Showcases an exam-
ple of direct exchange. Connections are directed meaning that Entity 1
and Entity 2 can exchange information while Entity 3 can only receive
information from Entity 2 and send information to Entity 1. (b) Show-
cases an example of indirect exchange. Ants do not directly exchange
information amongst themselves. They instead communicate indirectly
by exchanging information with the environment entity. (c) Showcases
exclusive exchange whereby Entities 1, 2 and 3 are able to exchange in-
formation amongst themselves but unable to exchange information with
Entities 4, 5 and 6 which form their own sub-network. 77

3.9 The different ant hill topographies used in the model. 83
3.10 A Figure demonstrating the perception cone of the Ant agents. The red

pixels are ant agents and the orange pixels are the cells they query to
determine which path to follow. 85

3.11 The information exchange network of the Foraging Ant Model. Ants de-
posit pheromones onto grid cells they visit. They perceive the pheromones
on grid cells in the direction they’re facing and, if enabled, the environ-
ment will decay the amount of pheromones on each of its grid cells in
accordance with the decay_factor. 86

3.12 Number of collected resources for each Ant-type across both the static (a)
and dynamic (b) scenarios. 87

3.13 Figures showcasing the ’with decay’ Ants at various stages in a typical
model run. Red pixels are ants looking for resources, blue pixels are ants
carrying resources and green pixels are cells that contain resources. 88

3.14 Rate of resource collection for each Ant-type across both the static (a)
and dynamic (b) scenarios. 89

3.15 The pheromone intensity of the ’with decay’ ant type at timestep 500 (a)
and timestep 1000 (b). 90

3.16 A map of Egypt courtesy of Wikimedia Commons user H.Seldon. Licensed
CC BY-SA 3.0, see: https://commons.wikimedia.org/wiki/File:Faiyum_
oasis.svg. 94

3.17 Example GIS data-maps. 114
3.18 Example GIS data-maps (continued). 114
3.19 An information exchange perspective of the agent-types at some arbitrary

timestep. Note: All settlement entities in the Information Exchange agent
network should be linked. The diagonal connections were omitted for
visual clarity. 125

3.20 A figure depicting the execution order of NeoCOOP ’s systems. The num-
ber that prefixes the system’s name indicates its position in the execution
queue. The Information Exchange System and Rule-based Adaptation sys-
tems are present when the type of agent being investigated are the IE and
rb-adaptive agents respectively. 129

https://commons.wikimedia.org/wiki/File:Faiyum_oasis.svg
https://commons.wikimedia.org/wiki/File:Faiyum_oasis.svg

List of Figures xii

4.1 The processed height (a) and sand content (b) datamaps used in our ex-
periments. The sand / clay content data was not available in a higher
resolution so it is noticeably less accurate than the heightmap. 149

4.2 An example of how the mixing parameter x is generated over the course
of a simulation run for a single vegetation model property (temperature,
rainfall, flood height). In this example, f = 2500. 151

4.3 Plots of the average total agent population (a) and surplus resources of
the entire agent population (b) for all agent-types investigated. 156

4.4 Percentage of FARM actions performed by the original agent-types (a)
and the supplementary experiments run for the IE agent-type (b). Note:
Figure (b) is labelled such that IE-N indicates that the IE agent-type was
used with a farm_production_rate of N. 158

4.5 Household population levels for farming production rate supplementary
experiments. Note: The Figure is labelled such that IE-N indicates that
the IE agent-type was used with a farm_production_rate of N. 160

4.6 Plots of the average number of settlements per household (a) and the
average number Household move actions (b) for each agent-type. 162

4.7 Average Gini-Index of each agent-type investigated. 164
4.8 Final Household population (a) and Gini Index (b) for supplementary

learning rate experiments. 166

5.1 The suitability trade-off. As the number of systems in your ABM in-
creases, the use of adaptive-agents becomes more desirable. This is due
to the increasingly complex rule-based agents that would need to be con-
structed to account for the interconnectedness of the model’s systems. . . 177

5.2 An example of the proposed "Islands" Model. Here with have three envi-
ronments of decreasing size (increased resource stress). The environments
are represented as a graph such that an agent in Environment 3 would
first need to migrate to Environment 2 before migrating to Environment 1. 178

A.1 A visualization of the final results produced by a typical simulation run.
Black pixels indicate settlements or farmland. 195

C.1 Figures showcasing the generated floodmap (a) and the result of using the
floodmap to generate environment resources (b). Figure (a) is supposed
to be mostly black (See Section C.3). In Figure (b), darker pixels indicate
resource abundance and lighter cells indicate resource scarcity. 203

D.1 Final Individual population levels for the exploratory experiments. 207

List of Tables

2.1 A summary of ABM limitations described in Section 2.1.5. 43
2.2 A summary of Section 2.2 which introduces various ML Techniques and

their uses in the development of ABM. Note: ANNs can be used as
adaptive mechanisms but, a suitable network architecture would need to
be used (like a Deep Q-Nework). 43

3.1 Input Parameters of the Simple Predator Prey Model. These values are
exactly the same as those presented in Tatara et al. [7]. 69

3.2 Parameters used in Foraging Ant Simulations. 87
3.3 A summary of the absolute chronology of the Egyptian Predynastic with

alternative chronological terms. (Based on Stevenson [8]). 93

4.1 Initialization parameters of each agent-type. 153
4.2 Initialization parameters for experiments evaluated in this work. 154
4.3 Summary of the Posthoc Dunn Test (p = 0.05) performed on the Total

Household Population for each Agent Type. Significant differences have
been highlighted in grey. 155

4.4 Summary of the Posthoc Dunn Test (p = 0.05) performed on the Total
Surplus Resources for each Agent Type. Significant differences have been
highlighted in grey. 155

4.5 Final adaptability rankings of the agents based on their ability to maintain
and increase both population and surplus resource levels across a simula-
tion run. For example, a rank of 1 means that the agent ranked first in
that metric. 157

4.6 Summary of the Posthoc Dunn Test (p = 0.05) performed on the total
Household population for each farm production rate supplementary ex-
periment. Significant differences have been highlighted in grey. 159

B.1 A list of NeoCOOP ’s properties. Note that specialized agent-type prop-
erties are described in Section 4.4. 200

xiii

List of Algorithms

1 A Simple Threshold Mathematical Model for Modelling Human Behaviour

(Adapted from Kennedy [9]) . 20

2 The Q-learning Algorithm as outlined by Sutton and Barto [10]. 29

3 Algorithmic Structure of an Evolutionary Algorithm 30

4 Algorithmic Structure of a Cultural Algorithm 32

5 Pseudocode for Traditional Agent’s resource acquisition decision making

system. 119

6 Pseudocode for Agent’s resource transfer decision making system. Note:

This pseudocode assumes that both the recipient and donor are acquain-

tances. 120

7 Pseudocode for Utility Agent’s resource acquisition decision making system. 123

8 Pseudocode for the Global Environment System. 129

9 Pseudocode for the Soil Moisture System. 130

10 Pseudocode for the Vegetation Growth System. 132

11 Pseudocode for the Resource Acquisition System. 134

12 Pseudocode for the Resource Transfer System. 135

13 Pseudocode for Resource Consumption System. 136

14 Pseudocode for the Population Management System. 137

15 Pseudocode for the split_household function. Note: This code assumes

that the correct agent-type is being created when new Household() is called.139

xiv

List of Algorithms xv

16 Pseudocode for the Information Exchange System. Note: This code as-

sumes that a belief space has already been created for each settlement. It

also represents the unoptimized version of the code because it improved

readability. 140

17 Pseudocode for the Rule-based Adaptation System. 143

18 Pseudocode detailing how climate data (rainfall, temperature and flood

height) was generated for the simulations investigated in this work. Here

func refers to type of functor that takes in the timestep t as input and

returns a value ∈ [0.0, 1.0]. The sinusoid function defined in Equation 4.2

is one such function. 152

19 Pseudocode for generating slopemap data using heightmap data. Here cell-

size refers to the distance between orthogonal cells calculated using the

scale of the heightmap. 202

Abbreviations

ABM Agent-Based Model

ACO Ant-Colony Otimization

ALIFE Artificial Life

ANN Artificial Neural Network

BDI Belief Desire Intention

CA Cultural Algorithm

EA Evolutionary Algorithm

ECS Entity Component System

GA Genetic Algorithm

GIS Geographic Information System

IE Information Exchange

KIDS Keep It Descriptive Stupid

KISS Keep It Simple Stupid

ML Machine Learning

NeoCOOP Neolithic Cooperation Model

ODD Overview Design-Concepts and Detail

PECS Physis Emotion Cognition and Status

RL Reinforcement Learning

SES Sociological-Ecological Systems

UML Unified Modelling Language

xvi

Nomenclature

Ancient Egypt A Northeast African Ancient Civilization situated in the Nile Valley

that formed around 3200-3100 BC.

Badarian Predynastic Egyptian archaeological culture. Preceding the Naqada culture,

the Badarian culture provides some of the earliest direct evidence of agricultural

practices in Upper Egypt.

Delta Large flat plain lying north of Cairo (ancient Memphis) and drained by the Nile

river. Area also known as Lower Egypt.

Early Dynastic Synonym for Archaic Period, Dynasties 1 and 2.

Late Predynastic Synonym for Naqada II (Gerzean) Period.

Lower Egypt The Delta.

Maadi-Buto Predynastic Egyptian Culture from Lower Egypt. The Maadi-Buto Cul-

ture preceded the Naqada III culture that slowly dominated Lower Egypt towards

the end of the Predynastic Period.

Naqada Chronology Periods in Predynastic Egyptian history. The Naqada Chronol-

ogy has three main divisions (Naqada I/II/III) each with further subdivisions

(A/B/C/D).

Naqada Culture Predynastic Egyptian archaeological culture named after the town of

Naqada situated in Upper Egypt.

Neolithic revolution Term applied to the apparent rapid spread of a Neolithic lifestyle

throughout the ancient world.

Neolithic Period when evidence of domestication (plants or animals) can be determined.

In Egypt the Neolithic precedes the Predynastic.

xvii

xviii

Nome Pre-State Large political Upper Egyptian entity consisting of aggregations of

proto-nomes.

Palaeolithic Old Stone Age, a general reference to that period prior to the domestica-

tion of plants and animals.

Pre-Nome Independent local village in Upper Egypt characterized by its political au-

tonomy.

Predynastic Period that followed the Neolithic period in Egypt. Sometimes referred to

as Prehistoric Egypt, this period consisted of the unification of both Lower and

Upper Egypt under a single state identity. The Predynastic preceded the Early

Dynastic Period.

Proto-Nome The first composite political units of Upper Egypt consisting of aggrega-

tions of previously autonomous local villages.

Protodynastic The Early Dynastic Period.

rand() Shorthand for sampling a random value between 0 and 1 from a uniform distri-

bution.

Social complexity (stratification) Term used to describe a culture with multiple so-

cial classes, often used as a synonym for civilization; a socially complex and

economically diverse culture.

The Upper Egyptian Proto-State An economic and political unit constructed from

previous nome pre-states. Sometimes called the "Upper Egyptian commonwealth",

this political entity was ideologically, economically, and militarily “glued” to the

most powerful polity, likely situated in Hierakonpolis or Abydos.

Upper Egypt Southern Egypt, traditionally that area south of Cairo. When used with

Middle Egypt, it refers to that area south of Asyut.

Valley Used in reference to the entire Egyptian Nile Valley, but can refer specifically to

Upper Egypt, that area south of Cairo.

Several definitions taken from Brewer and Teeter’s "Egypt and the Egyptians" [11] and Anđelković’s
"Political Organization of Egypt in the Predynastic Period" [12].

Chapter 1

Introduction

Agent-Based Models (ABM) are dynamic computational models that utilize autonomous

agents capable of interacting with other agents and adapting to novel situations within

the simulations they occupy [13]. ABM have been used in numerous research fields

ranging from Chemistry [14] and Epidemiology [15] to Economics [16] and Archaeology

[17] (See Figure 1.1 for a few visual references). ABM take a bottom-up approach to

modelling. This makes them the accepted approach to modelling emergent behaviour,

that is, the observed macro-behaviours of a system that result from the micro-behaviours

of the agents themselves.

The nature in which ABM create emergent behaviour is of interest to those in the So-

cial Sciences, particularly those concerned with the modelling of human behaviour. In

contrast to their mathematical counterparts, ABM allow for the modelling of heteroge-

neous autonomous agents with bounded rationality. This makes them apt candidates for

modelling complex social processes. This fact, and the conceptual accessibility of ABM,

has led to the rapid adoption of ABM in the Social Sciences. This is especially true for

the field of Archaeology [18] which, up until the development of ABM, did not have a

method for observing the emergence of complex social phenomena through the lens of

individual behaviours and interactions.

This is further demonstrated in Figure 1.2a where we see that archaeological finds can

be viewed as snapshots into the past. Theories are then manifested to explain how these

societies or communities transitioned from snapshot to another. For the most part, these

theories are conjecture. However, ABM provide an empirical framework by which these

1

Introduction 2

theories can be tested. Furthermore, theories are subject to the concept of Equifinality

which states there may, in fact, be several theories which reasonably explain or produce

the observed transition from archaeological snapshot to another. While ABM do not

inherently solve this problem, researchers can develop an ABM for each of these theories

and compare the results they produce against other ABM and the archaeological record

[19] (See Figure 1.2b).

However, ABM are relatively new to the Social Sciences (Game theoretic cooperation

dynamics are a notable exception to this) and, as such, are not without their limitations.

These limitations can be broadly categorized as follows:

1. ABM are black-boxes. That is to say that the nature in which ABM are designed

and implemented are often opaque with the reproducibility of any given ABM

dependant on the descriptive prowess of its creators [20].

2. ABM are unpredictable. This is largely to do with the fact that ABM are

constructed in a bottom-up manner [21]. Not only does this make them sensitive

to different kinds of input but the ramifications of adding or removing particular

systems are typically intangible until the model is run.

3. ABM suffer at scale. For every agent and system added, there is an additional

computational cost. There is a practical upper-limit to this cost which "large-

scale" ABM often reach [22]. This means that modellers often need to simplify

their models or employ complex parallelization techniques in order to run their

models in acceptable time-frames.

4. ABM often lack adaptive mechanisms despite adaptability being touted as

one of ABM’s biggest strengths [4, 13].

1.1 Motivations

Of these four issues, research pertaining to adaptive-ABM is noticeably absent and there-

fore the primary focus of our research. The lack of adaptive-ABM and adaptive-ABM

literature is actually quite surprising. In the context of Agent-Based Modelling, adapt-

ability refers to the ability of agents to create new strategies about how to make decisions.

Introduction 3

(a) A model of showcasing the transmissibility
of a virus. Taken from Cuevas [23], the blue
and red dots showcase susceptible and infected

agents respectively.

(b) A visual representation of a social net-
work of resource sharing agents. Taken from
Molin et al. [24], green nodes represent
agents with more resources while red nodes

represent agents with no resources.

(c) A model showcasing settlement distribution of the ancient Minoan civilization
on Crete Island. Taken from Chliaoutakis and Chalkiadakis [25], the green and
yellow circles are settlements while the red dots represent actual archaeological dig

sites.

Figure 1.1: Figures showcasing various ABM.

Introduction 4

(a)

(b)

Figure 1.2: Figures of the various topics surrounding the usage of ABM in Computa-
tional Archaeology. (a) Demonstrates how ABM are used to provide empirical evidence
to support theoretical constructions of snapshot transitions while (b) illustrates the
concept of Equifinality which states that multiple theories (indicated in green) might

explain the transition from one snapshot to another.

With regards to the modelling of complex social processes, adaptability, both evolution-

ary and individually, is a fundamentally human trait [26] that a traditional rule-based

ABM is rarely capable of achieving.

Despite the lack of adaptive-mechanisms in ABM literature, Machine Learning (ML) has

been proposed as a potential solution to this problem. Machine Learning, the program-

ming of computers to optimize a criterion using example data or past experience [27], is

capable of introducing adaptive mechanisms by which agents, and the ABM, can learn

and adapt [4]. These techniques can be applied at two different scales. Either they are

applied to the population of agents, in the case of Genetic and Cultural Algorithms [28],

Introduction 5

or they are applied to the agent itself, in the case Reinforcement Learning [29]. Addi-

tionally, ML techniques can also be used to parameter tune [30] as well as reduce the

complexity of ABM [31].

In order to effectively evaluate the benefits brought upon by the inclusion of ML adaptive-

mechanisms, a sufficiently complex contextual backdrop is needed. The motivation for

this statement are two-fold. Firstly, a "Toy-box" model [32] is unlikely to illuminate the

deficiencies of rule-based agents simply due to the fact that the environment would be

too simple. Secondly, ABM are slowly becoming more data-oriented which has resulted

in an explosion of model complexity (See Chapter 2). Thus, it would be appropriate to

illustrate the benefits of adaptive-agents in a state-of-the-art environment.

Given this prerequisite, we have elected to model the formation of the Ancient Egyptian

state during the Predynastic period. The Predynastic period marks the cultural trans-

formation of the Egyptian people from hunter gatherers to agricultural villages [11].

What were the factors that caused this transition and how do these factors compare to

other Neolithic transitions? Several natural and social factors have been attributed to

this transition. The interaction of these factors and the complexity of human behaviour

undoubtedly makes this entire period consist of a number of complex social processes

which our proposed adaptive-ABM is poised to model.

1.2 Research Questions

In short, it is through the utilization of ML as adaptive-mechanisms and a model of

Egypt during the Predynastic period (created using both archaeological data and and

assumptions drawn from the data itself) that we seek to answer the following research

questions:

1. Do agents using machine learning techniques as adaptive mechanisms, exhibit

greater adaptive capacity (recovery and resistance of population and resource lev-

els) [33] than traditional, rule-based, agents when placed into sufficiently adversar-

ial environments (A model of Egypt during the Predynastic period)?

Introduction 6

2. Are our adaptive-agents capable of producing new emergent behaviour (such as

polity cycling [34] or strategy specialization [35]) that the traditional, rule-based,

agents could not?

3. Using both the traditional and adaptive-agents, what insights do they provide with

regards to the Predynastic agricultural revolution as it relates to the presence of

the Nile floodplain [12] and desertification [36]?

There is no universal measure for Adaptability (or Adaptive Capacity in vulnerability

literature). As noted by Engle [37], adaptability is really a combination of a system’s

perceived vulnerability and resilience. If a system is vulnerable, its adaptive capacity is

reduced. Conversely, if a system’s resilience is high, its adaptive capacity is high. To

objectively measure the adaptability of our agent designs, we use two metrics used in

resilience research [33]:

1. Recovery: The time taken for a variable to return to its original value after a

disturbance.

2. Resistance: The change of a variable after a disturbance event.

An agent with greater adaptive capacity will be able to resist stress to a greater degree

and, in the case were it is affected by said stress, recover faster. Recovery and resistance

require the monitoring of specified data-points produced by each agent type. These sim-

ple data-points are derived directly from the properties of the model and agents them-

selves. The properties of interest are population and resources which are commonly used

to measure culture and population dynamics in both general adaptation and resilience

research (See Heckbert [38], Molin et al. [24] and Schlüter and Pahl-Wostl [39]).

The second type of data we are interested in observing are composite properties. Compos-

ite properties are derived from model or agent properties. While interesting composite

properties cannot necessarily be predetermined due to the black-box nature in which

ABM produce emergent behaviour, some composite properties we may be interested in

include population inequality (a predictable composite property) and settlement centrality

[40] (an unpredictable emergent property). Should our adaptive-agents facilitate emer-

gent behaviour not observable in the rule-based agents (Research Question 2), composite

properties will be used to understand why that was the case.

Introduction 7

1.3 Contributions

The primary contribution of our work is a comprehensive demonstration of the capabili-

ties of ML techniques (specifically Reinforcement Learning for individual adaptation and

a Genetic and Cultural Algorithm for generational adaptation) as adaptive-mechanisms

compared to traditional, rule-based, mechanisms in complex (realistic) environments.

Additionally, this work contributes the following:

• The design and development of NeoCOOP (See Section 3.4) an ABM that sim-

ulates the complex social phenomena that arise from Neolithic-inspired resource

sharing agents. We also demonstrate that NeoCOOP operates under a wide-range

of parameter values in both Toy-box [41–43] and realistic (See Sections 4.4 and

4.5) environments showing its scalability and applicability as a modelling tool. In

achieving this, we also demonstrate the applicability of the Entitiy-Component-

System (ECS) design pattern (See Section 3.1) for developing adaptive-ABM.

• Given that our primary case study is that of Predynastic Egypt (See Section 3.3),

our work empirically investigates the effects the natural factors of desertification

[36] and the presence the Nile floodplain [12] had on the formation of Ancient

Egypt during the Predynastic Period. Specifically, we investigate emergent in-

equality (See Section 4.6.3), settlement density (See Section 4.6.2) and the rate of

agricultural adoption (See Section 4.6.1) through the lens of these aforementioned

natural factors.

1.4 Outline

The dissertation is presented as follows: Chapter 2 provides an extensive review of back-

ground, related and relevant work. Chapter 3 details the development process of Neo-

COOP, the ABM developed to study the research questions presented in this work.

Chapter 4 outlines the experiment design process and the results produced by said ex-

periments. This Chapter also includes an analysis of the outputs produced by all of the

agent-types investigated in this work. Chapter 5 provides a discussion of the research

conducted in this work. The dissertation concludes with Chapter 6 which summarizes

our findings and highlights avenues for future work.

Chapter 2

Background and Related Work

In this chapter, we seek to explore the current state of ABM literature with a particular

focus on the Social Sciences and the modelling of complex social phenomena. Our pri-

mary motivation for the review is predicated on the fact the ABM research in the Social

Sciences has seen an uptick in popularity over the past couple years and we thought it

pertinent to study not only the reason for the surge in popularity, but also the current

limitations with the state-of-the-art.

Early on in this review process, we found that despite being touted as a core benefit of

ABM, most ABM do not incorporate adaptive-mechanisms. Given this, we expanded

our review to also include methods for incorporating adaptive-mechanisms into ABM.

Machine Learning was identified as the most promising and our findings are presented

below.

Section 2.1.1 introduces the types of ABM, Section 2.1.2 discusses the concept of the

"Agent" in Agent-Based Modelling and Section 2.1.3 defines the types of environments

that agents occupy. Additionally, we highlight some of the core concepts that underpin

Agent-Based Modelling in the Social Sciences (Section 2.1.4), their limitations (Section

2.1.5) and we discuss the current frameworks for conducting and implementing ABM

research (Section 2.1.6). Section 2.2 provides an extensive overview of Machine Learning

and its relationship to ABMs. The chapter concludes with a a review of the start of the art

(Section 2.3) and a final discussion (Section 2.4) that includes our own recommendations

for how the state-of-the-art can be improved.

8

Background and Related Work 9

2.1 Agent-Based Modelling

Agent-Based Models (ABM) are dynamic computational models that utilize autonomous

agents capable of interacting with other agents and adapting to novel situations within

the virtual environments they occupy [13]. Sometimes referred to as Individual-Based

Models, ABM are complex adaptive systems capable of producing emergent behaviour

from simple rule-sets [44]. There are several comparable computational models such as

Dynamic Decision Networks, Cellular Automata and Microsimulations, however, ABM

emphasize the emergence of complex, multi-directional, interactions facilitated by indi-

vidual decision making [45].

Due to their broad applicability and relative infancy in some fields, ABM do not have a

universally accepted formal definition. A typical ABM usually consists of a set of agents,

placed onto an artificial environment, behaving in accordance with their rule-sets and

the current state of the environment [46]. Similarly, the constitution of an agent or an

environment is equally as broad in scope as the ABM themselves.

2.1.1 Types of Models

As noted by Gilbert [47], ABM come in several different flavours. Namely:

2.1.1.1 Scale-Models

The real world is simultaneously rich in detail and vast is scale. This makes modelling

the real world both impractical and impossible. Scale models serve to reduce both the

level of detail and the complexity of a real-world model such that its implementation

and execution is practical yet informative. Scale models may also be the result of, up or

down, scaling some other model. A common example of model scaling in ABM is agent

abstraction, the process of taking a smaller unit of agents (individuals) and grouping them

as one singular agent that represents their collective decision making (e.g. household).

It is worth noting that scaling an ABM can be particularly tricky given that predicting

the consequences of model scaling is impossible.

Background and Related Work 10

2.1.1.2 Idealized-Models

Target models may be incredibly complex, consisting of a number of defining character-

istics and systems. However, a particular researcher may only be interested in studying

one of these characteristics or systems. Idealized models solve this problem by exagger-

ating some of the characteristics or systems in order to simplify the model. For example,

a stock market model may assume that stock exchange is instantaneous or a model sim-

ulating the transportation of a particular product may assume that no accidents occur

along any given route. Idealization may have a negative effect on the validity of a model’s

results, however, if used appropriately, idealized models can reduce the complexity of a

target model while maintaining the validity of its results.

2.1.1.3 Analogical-Models

These models are based on an analogy drawn between a target phenomena and some

better understood phenomena. These models may be successful, such as the computa-

tional model of the mind [48], but their validity is solely dependent on the adequacy of

the analogy.

This is by no means an exhaustive list nor does it capture that most ABM are some

combination of these sub-categories, however, it does highlight why ABM are so broadly

applicable. In addition to broad applicability, ABM have three distinct advantages over

other computational models. Firstly, ABM take a bottom-up approach to modelling.

This makes ABM the accepted approach to modelling emergent behaviour [49]. Emergent

behaviour is described as the observation of phenomena, such as self-organization and

chaos, unfamiliar to classical sciences [21]. These phenomena are observed in ABM

through the macro-behaviours of the system in response to the micro-behaviours of the

agents themselves. Secondly, ABM are easier to conceptualize and are often a natural

method for describing real-world problems. It is typically easier to describe complex

behaviour using ABM than it is for most traditional models using differential equations.

Lastly, the ever-popular Object-Oriented Programming paradigm naturally compliments

the bottom-up approach of ABM with its emphasis on representing autonomous units as

models/sub-models that are aggregated into an executable program [21].

Background and Related Work 11

2.1.2 What is an Agent?

The concept of an "Agent" in Agent-Based Modelling has not been universally agreed

upon. An agent can be intelligent but it does not have to be. An agent may be an

individual, a household or even a system that makes decisions. The broad applicability

of ABM does not do them any favours either as the concept of an "Agent" may differ

depending on the field of research. Fortunately, a number of features are prevalent in

all agent definitions. Crooks and Castle [45] identified the commonalities among these

definitions as follows:

• Autonomy: Agents are autonomous units that are capable of processing infor-

mation as well as exchanging information with other agents in order to make in-

dependent decisions. They are free to interact with other agents. Although the

simulation may restrict this if appropriate. (Prohibiting information exchange over

vast distances for example)

• Heterogeneity: The agents are all different individuals and the notion of the

average agent is redundant and although agents may form groups, this should be

the result of a bottom-up amalgamation rather than forced grouping.

• Active: The agents are considered active because they influence the simulation.

This is further defined:

– Pro-active/Goal-directed: Agents are defined as having a set of goals.

They should behave in such a way as to achieve those goals.

– Reactive/Perceptive: The Agents can be aware of the changes in the envi-

ronment. They can also be provided with prior-knowledge of possible obstacles

and other entities.

– Bounded Rationality: Agents should behave rationally within the context

of their bounded rationality. Their rationality can be altered through their

heterogeneity as well as their perceptive abilities.

– Interactive/Communicative: While all Agents may not communicate ex-

tensively, they should all have the ability to.

– Mobility: The Agents should be able to roam the environment. This, in

combination with the agent’s intelligence and ability to interact, can create

complex situations.

Background and Related Work 12

– Adaption/Learning: Agents may also be adaptive such that they become

complex adaptive systems. Adaptation may consist of memory or learning

and can be implemented at both the individual and population levels.

In a practical sense, Agents can be seen as social actors programmed to act within the

environment they occupy [47]. A typical Agent within in an ABM will consist of a unique

identifier, some number of characteristics (age, wealth and so on) and a set of behaviours

that define how the agent acts in its environment. Some simulations may consist of many

different types of agents each with their own set of characteristics and behaviours. Some

of these agents may be animated (move freely about the environment) while others may

be stationary.

2.1.3 Environments

In a similar vein to agents, the environment of an ABM is equally as undefined. Loosely

speaking, the primary purpose of the environment is to be a medium upon which agents

act to achieve their goals through agent-to-agent and agent-to-environment interactions

[45]. An environment may be neutral (void of characteristics) or as detailed as the agents

themselves. Given the popularity of ABM in both the Natural and Social sciences, a

typical ABM environment represents a geographical space. The resolution/fidelity of

this space is largely problem dependent but ranges from a simple 2D grid-world [46] to

recreations of real-world geographical locations with multiple GIS-layers [25]. ABM that

have environments which represent a geographical locations are know as spatially-explicit

[47]. Although less common, some ABM elect to represent their environment using some

other feature such as a knowledge space or relationship graphs. These types of ABM are

known as spatially-implicit.

2.1.4 Agent-Based Modelling in the Social Sciences

While well established within the Natural Sciences, the use of ABM in the Social Sciences

only came into prominence in the 1990s [50] with Epstein describing them as "changing

the face of Social Science" [51]. When compared to traditional Mathematical models,

ABM offer agent heterogeneity for modelling different views within a social environment,

the ability to model more complex social conditions and adaptive agents with bounded

Background and Related Work 13

(a)

(b)

Figure 2.1: A figure showing the different types of ABM environments. (A) show-
cases a spatially-explicit grid-world environment where black pixels represent settle-
ments, grey pixels represent farmland and white pixels represent uninhabited land.
(B) showcases a spatially-implicit relationship graph where agents must be connected
if they are to interact with each other. These relationships may be bidirectional

(Agent1 < − > Agent4) or unidirectional (Agent2− > Agent4)
.

rationality [52]. ABM are considered a "generative" approach to the Social Sciences, that

is to say that ABM seek to explain the emergence of complex social processes through the

local interactions of heterogeneous autonomous agents. These local interactions "grow"

or "generate" the observed macro-behaviours and if the agents are cognitively plausible,

behave under plausible rule-sets and generate the macro-behaviours in a plausible time

frame, the local interactions can then be viewed as possible progenitors of the observed

macro-behaviours. The generative approach to modelling makes ABM apt candidates

for modelling emergent social processes such as human mobility [15] and the formation

of hierarchical structures [53].

Perhaps the most famous ABM within the social sciences, Sugarscape [46] simulated the

survival of sugar consuming agents on a 2D grid. At each coordinate on the grid, there

was a sugar level to denote the amount of sugar available in that cell. Agents, who needed

to consume sugar in order to live, traversed the grid freely in search for sugar. Sugarscape

allowed for multiple sugar replenishment strategies as well as agent heterogeneity through

varied metabolism and view distances. Simple alterations in the agent decision making

process and varied sugar replenishment strategies allowed Sugarscape to simulate wealth

inequality and population carrying capacity dynamics to name a few.

Background and Related Work 14

Although ABM have been used to explain the emergence of a variety of social phenom-

ena, when does an ABM sufficiently explain the emergence of some observed macro-

behavior(s)? If a particular model cannot repeatedly generate a target macro-behaviour

then the model fails to explain it. This is known as "generative sufficiency" and can be

summarized by the saying "If you didn’t grow it, you didn’t explain it" [54]. It is worth

mentioning that successfully simulating some macro-behaviour does not necessarily ex-

plain it either. The mechanisms by which the macro-behaviours are generated need to

be critically examined. In other words, successfully modelling a macro-behaviour only

provides a possible or candidate explanation and further investigative work needs to be

done in order to prove the work empirically. This by no means indicates that ABM are

useless, in fact, Epstein [55] argues that it is the very ability of ABM to empirically dis-

prove the emergence of some target macro-behaviour(s) through the interactions of some

micro-behaviours that qualifies Agent-Based Modelling as a useful scientific instrument.

2.1.4.1 Agent-Based Modelling in Archaeology

The ability to computationally validate the emergence of social phenomena is, unsur-

prisingly, of particular interest to those in the Social Sciences. This statement is even

more appropriate to those in the field of Archaeology. Within last decade, there has been

a rapid adoption of Agent-Based Modelling within archaeological literature [20]. Lake

[56] attributes this to the conceptual accessibility of ABM. Firstly ABM are capable

of producing a wide variety of highly-digestible outputs. For example, virtual reality

recreations of ancient civilizations [57] and, more commonly, two-dimensional mappings

of household distributions [58] and artefact deposits [18]. Lake [56] further notes that

ABM are generally more comprehensible to non-specialists. Secondly, ABM do not en-

force a particular method of rule specification. Rules can be specified mathematically

but, they can also be described algorithmically. Algorithmic rules are typically similar to

informal models when compared to mathematical rules. Thirdly, ABM offer great flexi-

bility in what can be modelled. Models can involve different types of agent interactions

(direct or indirect), offer a variety of environment models such as topological networks

and two-dimensional abstractions of real world locations all the while allowing agents to

make decisions from either a global or individual model of the environment.

Background and Related Work 15

Lastly, agents are often modelled as individuals or households and while ABM are scale

agnostic, the ethnographic-scale of a typical archaeological ABM aligns with the notion

that Archaeology is about the study of the behaviour of people in the past. Barton [59]

notes the attractiveness of such systems that view individuals as the drivers of social

dynamics. Furthermore, the fragmented nature of the archaeological record means that

archaeologists are often left connecting particular behaviours and an expected archae-

ological pattern intuitively or in some cases experimentally. ABM offer a quantitative

method for connecting processes and patterns for building knowledge about the past [60].

2.1.5 Limitations of Agent-Based Models

ABM are by no means the "Swiss Army Knife" of computational modelling. In fact, ABM

are subject to a fair number of limitations both practical and theoretical in nature. These

limitations are categorized below (It should be noted that the categories presented are

by no means exhaustive but rather a list of commonly mentioned grievances with the

current state of ABM in academic literature).

2.1.5.1 ABM Suffer at Scale

As is true for every computer program, there is a practical upper-limit to the amount

of computational resources that can be used. ABM are no different. For every agent,

parameter and behavioural rule, there is a computational cost. ABM that push the

boundaries of this practical limit either through the sheer number of agents within the

model or through their complexity are know as "Large Scale" ABM [22]. "Large Scale"

ABM are particularly desirable because they allow us to examine agent-to-agent inter-

action and emergent behaviour produced from those interactions in more realistic and

complex environments. However, as ABM reach the limits of serial computing, hardware

and software solutions such as vector computers and GPU programming are needed [22].

This in itself is no small endeavour, the act of parallelizing an ABM introduces new prob-

lems such as memory management, thread management as well as recovery management

strategies [61].

Alternative techniques that involve simplifying the model are also available. Firstly,

one can simply reduce the number of agents within the model. This method involves

Background and Related Work 16

no model restructuring but does assume that the dynamics present within the smaller

model would be similar to those present in a large environment [22]. The second method

utilizes Super-Individuals. Super-Individuals are agents that represent a collection of

agents. For example, a household that represents a group of individuals is considered

a Super-Individual. Although this method often requires that models be restructured,

it is a relatively simple process that has the potential to retain the dynamics present in

the original model. It is worth mentioning that this method is particularly inappropriate

when the grouping of agents does not match the spatial context of the model itself [62].

Other techniques such as surrogate modelling can be used to speed up the execution time

of a "Large-Scale" ABM. Although, these techniques almost always come at the cost of

complexity of both the model and the results it produces.

2.1.5.2 ABM are Black Boxes

While their inputs and outputs are comprehensible, the opaque nature of an ABM’s im-

plementation is very rarely understood by anyone other than its creator(s). To combat

this, researchers have adopted the Overview, Design-Concepts and Detail (ODD) pro-

tocol [63–65]. This protocol seeks to quickly provide readers with the focus, resolution

and complexity of an agent-based model. Once a reader has read the ODD description

of a model, they should be able to, in any object-orientated programming language, be

able to create a skeleton program that implements the described agent-based model.

The implementation of the ODD protocol not only makes the inner-workings of an ABM

transparent, it also makes the work reproducible. A core concept in the scientific method

but rarely present in current ABM research [20]. The ODD protocol has been updated by

Müller et al. [66] to include a Decision making component. This component is designed

to describe the decision making process of human-like agents. The ODD+D protocol

is only applicable when modelling human behaviour. Alternatively, the Unified Mod-

elling Language (UML), provides a set of standardized diagrams capable of describing

an agent’s composition, environment, interactions and relationships. UML is rarely used

to describe ABM in the Social Sciences, although examples do exist [67].

As Manzo and Matthew [68] note, the lack of reproducible ABM is also in part due to

the lack of generally available software packages. While packages, such as NetLogo1 ,
1NetLogo is a popular Multi-Agent modelling environment available at: https://ccl.northwestern.

edu/netlogo/

https://ccl.northwestern.edu/netlogo/
https://ccl.northwestern.edu/netlogo/

Background and Related Work 17

do exist, the computer code needed to implement an ABM is largely dependent on the

observed phenomena and the hypotheses formalized. To solve this problem a number of

methodologies such a KISS, BDI and PECS, which are discussed in Section 2.1.6, have

been proposed. There have also been calls to publish future ABM under open-source

licenses in an attempt to make ABM research both transparent and easier to reproduce

[1, 68].

2.1.5.3 ABM are Unpredictable

The unpredictability of ABM largely has to do with complexity of the model itself. The

stochastic nature of ABM requires that they be validated over multiple runs. This is

further exacerbated by the number of parameters under consideration, of which there

is a practical upper-limit [49]. This is particularly true when it comes to mimicking

complex social processes. The abundance of parameter combinations possible in models

with heterogeneous agents in combination with the stochastic nature of the model itself

often produce results that are both too large and too difficult to describe [68]. To avoid

this, systems or processes may need to be simplified. A process that effects ABM in an

unpredictable manner [21]. Additionally, it is often argued that the emergent behaviour

exhibited in ABM are rarely found in the empirical world. This is due to the bottom-up

nature in which ABM are constructed which tends to make them sensitive to different

kinds of input [21]

Since the ramifications of simplifying a model are unpredictable, how does one go about

deciding what should or should not be included within the model? Techniques like

pattern-oriented modelling [69] aid us in designing for optimal model complexity. How-

ever, the unfortunate reality is that the search for optimal model complexity largely

remains a trial and error process. However, as Dean et al. [70] note, "failures are likely

to be as informative as successes because they illuminate deficiencies of explanation and

indicate potentially fruitful new research approaches".

2.1.5.4 ABM often Lack Adaptability

Adaptability is often touted as one of ABM’s biggest strengths [13]. This is particularly

interesting given that few models actually use adaptive-mechanisms when it comes to

Background and Related Work 18

modelling agent behaviour [4]. Adaptability in ABM literature refers to the ability of

agents to not only modify the actions they take but, also the strategies they use to deter-

mine which actions to take [4]. Adaptive ABM are better suited to producing emergent

behaviour as well as overcoming the rigid structure of traditional ABM, exploring unan-

ticipated parameter distributions when the model was created [71]. The caveat being

that introducing these adaptive-mechanisms is not entirely straightforward either as it

requires that researchers introduce other, often Machine Learning, techniques to their

model which in itself increases the complexity of the model and may even require that a

model be reworked to support these techniques.

2.1.6 Frameworks

In every ABM the rules of interaction between entities and the environment must be

grounded in a theoretical framework or academic consensus. The implementation of

theoretical models forces one to acknowledge the model’s assumptions both intentional

and not. Romonowska [1] describes these frameworks as having three separate phases

(See Figure 2.2). Most deliberation occurs over the conceptual phase as the latter two

phases, technical and dissemination, focus on general best practices. That is not to

say that the two latter phases are without criticism, but rather that their points of

contention have little to do with the simulation of social processes. The conceptual

phase has two predominant approaches. The KISS (Keep-it-Simple-Stupid) approach and

the KIDS (Keep-it-Descriptive-Stupid) approach. The KISS approach, as highlighted

by Cioffi-Revilla [72], is a top-down approach whereby a researcher or student starts

with a simple model M0 and iteratively builds to some final model Mf . The paper

describes the requirements of M0 such as specifying the questions to be answered by the

model and identifying the minimal set of social entities to name a few. Cioffi-Revilla

further describes the process of evolving the model (adding features, making features

more elaborate) and defines the final model Mf as a model that can sufficiently answer

the questions the modeller sought to answer as well as have the capability to undergo

peer-review and sensitivity analysis. The KIDS approach is a bottom-up approach that

starts with a highly sophisticated model and proceeds to simplify and/or remove systems

or entities until an appropriately complex model exists. ABM designs tend to favour the

KISS approach as the top-down, general to specific, approach reduces the likelihood of

introducing errors into a simulation as well as reducing the complexity of the results

Background and Related Work 19

Figure 2.2: Romanowska’s [1] framework for ABM development

produced. This may seem counterintuitive to the bottom-up nature in which ABM

produce emergent behaviour, however, simpler and correct models allow for researchers

to analyze the emergent behaviour of their models with the confidence that the observed

results are, in fact, valid in the first place.

Within the context of modelling human behaviour, Srbljinović and Škunca [50] note that,

due to the extraordinarily complex nature of social processes, the goal of an ABM is not

one of prediction but rather one of formalizing and developing new theories. Kennedy

[9] highlighted two modelling approaches that have seen varying levels of success. They

are detailed as follows:

2.1.6.1 Mathematical

These approaches simplify complex behaviours into a series of simple mathematical rules.

Often supported by a random number generator, variables and threshold values are

introduced to facilitate agent decision making. These models can be further described

as Dynamic Models [73] whereby the rate of change of a variable can be directly affected

by the value of the variable itself. Algorithm 1 illustrates an example of simple threshold

mathematical model. These models normally follow a KISS approach as the simple

mathematical rules can be aggregated to form a more complex model of agent behaviour.

While mathematical models are sufficient when the modeller is only concerned about

implementing a few agent behaviours, they often fail to capture nuance and complexity

of most social processes.

Background and Related Work 20

Algorithm 1: A Simple Threshold Mathematical Model for Modelling Human Be-
haviour (Adapted from Kennedy [9])

1 def decide(hunger, starvingThreshold, hungryThreshold):
2 if hunger < starvingThreshold then
3 Die();
4 else if hunger < hungryThreshold then
5 SearchForFood();
6 else
7 Wander();
8 return

2.1.6.2 Conceptual

There are two prevalent conceptual approaches for modelling complex social processes.

They are the belief, desire and intention (BDI) approach and the physis, emotion, cog-

nition and status (PECS) approach. Due to the conceptual nature of these approaches,

they may follow either a KISS or a KIDS approach. However, the equivocal nature of the

BDI framework encourages the KISS approach while the comparatively comprehensive

PECS framework encourages a KIDS approach.

The first approach, BDI [74], models an individual as having a set of beliefs, their world

as they perceive it, a set of desires (what they want to achieve within the world), a set of

intentions, and a set of possible actions to take after some deliberation. A decision tree

is constructed to represent the sets of beliefs, desires and intents. From this the agents

actions are determined and acted upon. Although BDI is appropriate for a great number

of circumstances, it is often too general to be considered anything other than a purely

conceptual framework.

Alternatively, PECS [2, 3] is a more specific framework that seeks to address the general-

ity of BDI. The framework consists of three horizontal layers which can be seen in Figure

2.3a. The first layer contains the sensor and perception components. These components

are responsible for relaying input information to the other components. Interestingly

the perception component can be used to manipulate the "raw" input data to include

biases, disabilities or any other factors that might affect how the agent might perceive

the environment. The second layer is the "meat" of the framework and maintains the

internal state of the agent. The Physis component models the physical attributes of

the agent (age, injuries). These attributes can be affected by vegetative processes or by

other agents. The Emotion component is used solely for maintain the emotional state

Background and Related Work 21

(a)

(b)

Figure 2.3: A figure showing the PECS [2, 3] Model (A) and a closer look at the
Cognition component (B)

of an agent. The emotional state of an agent is highly important in creating believable

behaviours as the emotional state of an agent may not only affect how it perceives in-

formation, but also how it makes decisions. The Cognitive Component can be further

broken down as seen in Figure 2.3b. The Self component contains information about

the agent’s knowledge about its internal state. The Environment component contains

the agent’s view of the world. The protocol component contains information about an

agent’s past actions and plans. The Planning component contains the agent’s future

plans. The Reflection component is responsible for changing the states of the four other

Cognition sub-components. It uses the other sub-components to provide the agent with

an updated view of the world as well as strategies that best suit the agent given its

perceived view of the world.

The advantage of PECS is that allows for the explanation of behavioural patterns in

a plausible manner, however, the framework noticeably lacks any implementation de-

tails regarding the external to internal transformations of world parameters to agent

parameters as well as the order in which components should be prioritized or integrated.

Background and Related Work 22

2.2 Machine Learning and Agent-Based Models

The utilization of Machine Learning (ML) and Evolutionary Computing (EC) in ABM

has piqued the interest of many within the last decade and while it is by no means

invasive in ABM literature, integrating ML and ABM is of particular interest for three

reasons:

1. It allows researchers to make use of adaptive mechanisms within their ABM frame-

work [4].

2. It can be used to abstract complex ABM while retaining the complexity of the

results/behaviours produced [75].

3. Certain techniques, like genetic algorithms, are particularly useful when researchers

need to quickly explore and understand the parameter space of their ABM [76].

In this section we seek to explore these three topics while simultaneously providing an

overview of various ML algorithms that are potentially useful when developing ABM.

Section 2.2.1 introduces the concept of using ML as adaptive-mechanisms, Section 2.2.2

describes the utilization of ML techniques for complexity reduction and Section 2.2.3

highlights ML techniques as ABM parameter tuning mechanisms. We also provide an

overview of surrogate modelling (Section 2.2.4), Reinforcement Learning (Section 2.2.5),

Genetic Algorithm (Section 2.2.6) and Cultural Algorithm (Section 2.2.7) techniques and

detail how they are typically used in ABM literature.

2.2.1 Machine Learning for Adapting Agent Behaviour

Adaptive-behaviour ABM do not simply refer to ABM in which agents can make numer-

ous decisions, but rather to ABM in which agents are capable of dynamically creating

new strategies about which decisions they should make. Adaptive-behaviour ABM are

typically harder to create. ML offers a surprisingly compatible solution to this problem.

In most ABM, agents often possess an internal model, their view of the world, which they

use to guide themselves in an effort to meet a particular goal. Similarly, ML techniques

are just as concerned with creating internal models to aid in the creation of adaptive

behaviour [4].

Background and Related Work 23

However, not all ML techniques are created equally and careful consideration must be

taken to ensure that a specific ML technique appropriately represents an agent’s learning

behaviour or if ML is appropriate for the problem at all. With regards to modelling in-

dividual and collective behaviour, Reinforcement Learning, Genetic Algorithms and, by

extension, Cultural Algorithms are appropriate [77] while other techniques, such as Neu-

ral Networks, are often reserved for abstracting complex ABM. Techniques may also be

combined to further encourage adaptive behaviour. Tang [78] demonstrated this by using

Reinforcement Learning and Genetic Algorithms to simulate the migratory patterns of

Elk in Yellowstone Park. The Reinforcement Learning component served as the learning

component of the Elk while the Genetic Algorithm served as a cooperative mechanism

for transferring migratory patterns. This combination of ML techniques allowed for the

ABM to more accurately capture the complex adaptive systems of Yellowstone Park.

Fortunately, integrating ML techniques into agent decision making is relatively simple in

concept. Rand [4] describes the typical algorithmic structure of an adaptive-behaviour

ABM as follows:

1. Initialize the system

2. Observe the state of the world

3. Update your internal model of the world

4. Take Action

5. Go to step 2 until time is up

When integrating a ML technique into an ABM, this procedure can be viewed as two

separate cycles (One for the ABM and one the ML technique), however, the integration

of the two cycles is largely problem dependent. Figure 2.4 is taken from Rand’s paper

and illustrates a "model refinement" implementation found in ABM that utilize ML

techniques as substitutes for rule/probability-based decision making. Additionally, a

parameter tuning ML technique, such as genetic algorithms, would operate on the ABM

rather than the agents themselves.

Background and Related Work 24

Figure 2.4: A "model refinement" design for a ML integrated adaptive ABM as
described by Rand [4]

2.2.2 Complexity Reduction

ABM suffer at scale [22]. For every parameter, rule, system and agent introduced into the

model, there is a computational cost. This is also true for robustness testing, parameter

sensitivity analyses and with procedures that seek to validate the results produced by an

ABM. Van der Hoog [75] defines this as the computational intractability of Agent-based

Modelling. Traditional solutions to this problem involve reducing the number of rules,

parameters or agents within the system or opting to use high-performance computing

(HPC) [22]. While both solutions are appropriate, neither are ideal. With regards to

the former solution, complexity reduction through simplification is effective in reducing

the computational cost of a model, however, the black-box nature of ABM makes the

subsequent decline in model fidelity due to complexity reduction unpredictable. With

regards to the latter solution, the use of HPC allows modellers to retain model fidelity

while reducing the "time-to-completion". HPC has been successfully applied to a number

of "large-scale" ABM frameworks in the past [79, 80] with Collier and North [81] noting

the "embarrassingly parallel" nature of some ABM allow for multiple simulation runs

across a number of different processors simultaneously.

HPC provides a solution for reducing the time it takes to run simulations, however, there

is an added financial cost associated with inclusion of additional processing units and

while this may not necessarily be of concern to those who use ABM for theoretical work,

it is of utmost concern to those who seek to use ABM practically. This is particularly

Background and Related Work 25

true for economic ABM where models need to maintain a high-level of precision while

being cost effective [75]. ML offers a solution that meets both these conditions.

Surrogate Learning is a ML technique whereby a "meta-model" is trained to approx-

imate the relationship between the inputs and outputs of a different, computationally

expensive, model [82]. With regards to ABM, surrogate learning refers to the training

of a "meta-model" that approximates the inputs and outputs of an ABM. There are two

approaches [75]: (1) Micro-Emulation and (2) Macro-emulation. Micro-emulation refers

to the replacing of the decision making component of the agents with a "meta-model",

typically an artificial neural network, trained to emulate the decision making process of

an agent. The "meta-model" is fed the inputs a typical agent would receive and predicts

which action an agent would make given the input conditions. This process is repeated

across all, or some, of the agents for the duration of the simulation. Macro-emulation

seeks to remove the need to run the ABM at all. The "meta-model" is trained to take the

output of the ABM at timestep t-1, as input, to predict the output an ABM at timestep

t. This processes is repeated, with the output predicted at timestep t being used to

predict the output of timestep t+1, until the desired number of iterations are reached.

Comparatively, both micro and macro-emulation serve similar purposes. They reduce

the complexity of an ABM while retaining the fidelity of the original model and they

are computationally inexpensive compared to a typical "large-scale" ABM and are thus

more cost-effective. Furthermore, Lamperti et al. [82] do note that macro-emulation is

particularly useful in parameter tuning.

2.2.3 Parameter Tuning

Parameter tuning is a critical step in the development of ABM. Unfortunately, even

relatively simple ABM can be characterized by a large number of parameters [76]. This

makes parameter tuning, the exploration and understanding of the parameter space, a

tedious endeavor. Additionally, ABM parameters are notoriously sensitive to change

with desirable emergent behaviour only occurring in a small subset of parameter values.

ML techniques can be used to aid in this process. As mentioned in Section 2.2.2, macro-

emulation is particularly useful in exploring the parameter space as the "meta-model"

surrogates are computationally inexpensive and are capable of exploring a large subset

Background and Related Work 26

of the parameter space in a short period of time. However, the predictive capabilities of

the surrogate are largely dependent on the amount of time spent training it [82].

Alternatively, guided search heuristics have also shown promise with Genetic Algorithms

having shown the most promise [76]. Guided search heuristics traverse the parameter

space in accordance with an optimization function defined by the modeller a priori. An

optimization function defines some metric for determining the "distance" or "closeness"

between specific outputs, produced by a parameter subset, and the desired output(s).

Guided search heuristics have a distinct advantage over macro-emulation in that they

do not have a training phase. This is particularly useful when the modeller has some

knowledge about the behaviour of the model. Conversely, careful consideration should be

taken in identifying an optimization function. The choice of optimization function may

drastically affect the types of solutions produced by the ABM. Stonedahl and Wilensky

[30] demonstrated the usefulness of guided search heuristics by producing multiple flock-

ing behaviours in boids by varying an optimization function. They were able to produce

convergence, non-convergence, volatility and the emergence of v-shapes within the same

ABM.

2.2.4 Surrogate Modelling

Surrogate Modelling seeks to utilize surrogates ("meta-models") to approximate the re-

sults produced by a more sophisticated and resource intensive computational model [83].

They are typically used to approximate the outputs of a computationally expensive

tasks, parameter tune, filter noisy data and data mine [83]. In Agent-based Modelling,

surrogate modelling is used primarily for complexity reduction.

Artificial Neural Networks (ANN) are the primary ML technique used in ABM surrogate

modelling for both macro and micro emulation. ANNs are, as their name suggests,

computational networks which attempt to simulate the decision making process of a

network of neurons in a biological organism’s nervous system [84]. An ANN (See Figure

2.5) traditionally consists of three layers: The input layer, the hidden layer and the

output layer, although it is possible to have an ANN with multiple hidden layers. The

neurons (nodes) in the aforementioned layers are connected by edges that have a weight

associated with them. The weight of an edge denotes its strength and in tandem with

the input values, or output values of a previous layer, are fed into an activation function

Background and Related Work 27

Figure 2.5: A feed-forward Artificial Neural Network with one hidden layer.

which determines the output of a neuron. This process runs sequentially through the

network with the output values of a previous layer being used as the inputs of the next.

In order for an ANN to accurately approximate a given function, a training algorithm is

needed. A training algorithm typically alters the weights of an ANN, although modifying

the internal structure of the ANN is a possibility [85]. Some training algorithms, popular

in ABM, include back-propagation [84] and Genetic Algorithms [86].

An attempt to discuss all the ANN variants would warrant its own thesis. For ABM,

traditional ANNs usually suffice, however, Recurrent Neural Networks (RNN), Neural

Networks where the output of the neurons in one or more layers are fed back into the

network in subsequent epochs, are particularly interesting in that they allow Neural Net-

works to model long-term dependencies [75]. Additionally, Deep Reinforcement Learning

is discussed in Section 2.2.5.

Yi et al. [87] investigated numerous Surrogate Modelling techniques (ANNs, Support-

Vector Machines and Kriging) as calibration tools for crowd models. In their experiments

the surrogates were tasked with predicting whether the offspring, produced by a genetic

algorithm, would produce desirable crowding behaviour. They found ANNs to perform

the best with a correlation coefficient of 0.7598. As discussed by Bonabeau [16], an ABM

was created, by the Bios Group, for the National Association of Security Dealers Au-

tomated Quotation (NASDAQ) Stock Market in order to understand the effects certain

modifications, a reduction in tick rate for example, would have on the stock market.

Background and Related Work 28

Their ABM employed a multitude of learning algorithms, including ANNs, to generate a

variety of agent strategies for buying and selling shares. Their ABM produced some un-

expected results. Namely, their ABM suggested that a reduction in the market’s tick size

would, consequently, reduce the market’s ability to perform price discovery. Lastly, Xu

et al. [31] compared ABM and Surrogate Modelling, specifically ANNs, in a simulation

of residential customer electricity demand under varying price rates. Both techniques

had distinct advantages and disadvantages. Namely, the ABM was sensitive to the cus-

tomer behavioural data it was based on while the ANN was incapable of separating load

demand into groups or appliances. They further note that ABM are more suitable for

research and planning while ANNs perform better when predicting trends over entire

regions.

2.2.5 Reinforcement Learning

Reinforcement Learning (RL) is a class of algorithms that involve learning how to map

actions to rewards so as to maximize a numerical reward signal [10]. Simply put, RL

agents are not told what to learn. They must discover it for themselves. RL is a

balance between exploration and exploitation, that is, agents must balance the act of

obtaining immediate rewards, through exploitation, with the possibility of discovering

greater rewards through exploration.

In Agent-based modelling, Q-learning [88] is the most popular form of RL and is typ-

ically implemented to introduce adaptive-behaviour. In Q-learning (See Algorithm 2),

an agent tries an action at a given state and is rewarded or punished. After repeating

this procedure over a number of episodes, the agent learns an optimal policy, a set of

state-action pairs that result in the most reward. The learning rate α and the discount

factor γ are the variables that determine how an agent learns in a given environment.

The learning rate is the factor at which new information overrides old information. A

high learning rate (α = 1.0) means that an agent will only ever learn from the most

recent information while a low learning rate (α = 0.0) means that an agent will learn

nothing at all. The discount factor determines how valuable future rewards are. A high

discount factor (γ = 1.0) means that an agent will value future rewards while a low dis-

count factor (γ = 0.0) means that an agent will result in a agent only valuing immediate

rewards.

Background and Related Work 29

Algorithm 2: The Q-learning Algorithm as outlined by Sutton and Barto [10].
1 Initialize Q(s, a), ∀s ∈ S, a ∈ A(s) and Q(terminal − state, ·)
2 for each episode do
3 Initialize S
4 for each step of episode until S is terminal do
5 Choose A from S using policy derived from Q(eg. ε-greedy)
6 Take action A, Observe R, S′

7 Q(S,A)← Q(S,A) + α[R+ γmaxaQ(S′, a)−Q(S,A)]
8 S ← S′

9 end
10 end

Zhang and Bhattacharyya [89] used Q-learning to calibrate agent-based supply network

models. In their ABM, the Q-Learning algorithm successfully calibrated the supply net-

work models to an optimal RPC (re-order point coefficient) value identified by a two-way

sweep of the parameter space. They viewed this as a strong demonstration of Q-learning’s

effectiveness at calibrating agent-based supply networks. Jalalimanesh et al. [90] used

multi-objective Q-learning (MDQ-learning) to identify multiple optimal agent strategies

for administering radiotherapy to cancerous tumours while minimizing the duration of

the tumour therapy period as well as minimizing the side effects of radiotherapy on

healthy cells. The results of their experiment were acceptable, although they note the

simplicity of the ABM itself, specifically the tumour growth process, could be further

elaborated in future research. Finally, Dreyfus-León [29] integrated Deep Q-learning

to model fisherman search behaviour. In real world tasks, Q-learning suffers from the

curse of dimensionality whereby agents are required to learn efficient environment rep-

resentations from extraordinarily high-dimensional sensory inputs. Deep Q-learning [91]

solves this problem by introducing a neural network to predict rewards rather than stor-

ing them in a traditional Q-table. The network is trained according to some learning

algorithm, like back-propagation, and the network becomes adept at accurately predict-

ing the rewards for sets of state-action pairs. In Dreyfus-León’s model the fishermen

were controlled by two neural networks, one that decided whether to stay or move in a

toroidal grid-world while the second network controlled the fisherman’s movement within

the grid cell. The agents were rewarded according to the number of fish that they caught

and were investigated in a number of scenarios with varying fish distributions (uniform

and non-uniform). Dreyfus-León found that the ABM was capable of producing fishing

strategies similar to those found in the real world.

Background and Related Work 30

Algorithm 3: Algorithmic Structure of an Evolutionary Algorithm
Input: MaxGenerations, MutationRate, CrossOverRate

1 Generate Initial Population P0

2 gen = 0
3 while gen < MaxGenerations do
4 CalculateFitness(Pgen)
5 Parentsgen = SelectionFunction(Pgen)
6 Childrengen = CrossOver(Parentsgen, CrossOverRate)
7 Mutate(Childrengen, MutationRate)
8 Pgen+1 = SelectNextGen(Pgen, Childrengen)
9 gen = gen + 1

10 end

2.2.6 Evolutionary Algorithms

Evolutionary Algorithms (EA) are a set of guided search heuristics inspired by Darwinian

theories of natural selection [92]. Each generation, a series of individuals, consisting of

an encoded representation of their genetic structure, partakes in a probabilistic game of

survival of the fittest. A distribution of individuals, weighted in favour of their fitness,

are selected for reproduction. Reproduction takes place through the exchanging of two or

more individual’s genetic structures, called crossover, to produce two or more offspring.

During the reproductive phase, offspring my have some of their genetic structure altered

through a mutation process. The offspring of the current generation are then used as the

parent population of the next generation. This process repeats until the rate of change

in the average fitness is below some threshold or the computational budget has been

spent. The fitness function, sometimes called an optimization function, is the driving

force behind a EA. It is defined by a modeller beforehand and represents a method of

mathematically scoring individual solutions. In the case of ABM, it may be scoring

an individual on its closeness to a particular output [30] or by ranking agents by their

ability to acquire/maintain a particular resource [78]. For more information on individual

encoding, selection, crossover and mutation operators, see Mitchell [93] (Sections 5.2-5.5).

For a brief outline of the algorithmic structure of a EA, see Algorithm 3.

In Agent-based Modelling, EAs typically serve two purposes: to introduce adaptive-

behaviour and Parameter Tuning. With regards to Parameter Tuning, EAs are suitable

for a number of reasons. Firstly, they are particularly adept at extracting parameter

subsets that produce desirable behaviour with Cioffi-Revilla et al. [94] noting that EAs

are undeniably useful in understanding the underlying characteristics of both simple

Background and Related Work 31

and complex social processes. Secondly, specialization techniques such as niching and

speciation allow for further exploration of the parameter space and, consequently, the

discovery of additional local maxima/minima candidate solutions [92]. Lastly, EAs are

well suited to parallelization with a number of distributed models, like the island model,

fitting naturally within the internal representation of an ABM.

In the context of introducing adaptive-behaviour into an ABM, EAs provide a mecha-

nism for simulating generational change. Oloo and Wallentin [95], using a EA, were able

to simulate the flight paths of pigeons with each new generation of agents becoming more

adept at emulating the pigeon’s flight paths. Macy and Skvoretz [28] observed the emer-

gence of cooperative behaviour in a modified Prisoner’s Dilemma scenario. Each agent’s

behaviour was presented as a 15 bit chromosome and, following agent interaction, the

fitter agent transfers some of their genetic material, with a 1% mutation rate, to the less

fit agent. This crossover method meant that genetic transfer could only occur at a local

scale. This resulted in the emergence of heterogeneous groups with cooperative behaviour

starting at a local level and then spreading globally throughout the environment.

Although uncommon, Genetic Programming (GP) has also been used in some ABM

frameworks. Instead of representing the properties/characteristics of an agent, genetic

structures in GP solutions represent a definition for some agent decision making process.

Manson [58] applied GP to land-use and land-cover change research of the Southern

Yucata´n Peninsular Region. In his ABM, Manson applied GP to model an agent’s ability

to access a given grid cell’s suitability for agricultural activities. The model performed

acceptably (Kappa Index of Agreement: 0.482 & Relative Operating Characteristic:

0.905) when compared to real-world data.

2.2.7 Cultural Algorithms

Similarly to EAs, Cultural Algorithms (CA) fall into the category of Evolutionary Com-

putation. Created by Reynolds [96], CAs can be viewed as an extension to a traditional

EA whereby the individuals transfer knowledge through a shared belief space rather

than by reproduction. As seen in Algorithm 4, CAs share the same general algorithmic

structure of EAs but have replaced the Mutation function with a belief space and a com-

munication protocol. In terms of optimization, the belief space represents the range of

values that an individual’s genetic structure is bound by. In terms of cultural evolution,

Background and Related Work 32

Algorithm 4: Algorithmic Structure of a Cultural Algorithm
Input: MaxGenerations, NormKnowledge, DomKnowledge

1 Generate Initial Population P0

2 Initialize belief space b(NormKnowledge, DomKnowledge)
3 gen = 0
4 CalculateFitness(P0)
5 while gen < MaxGenerations do
6 Parentsgen = SelectionFunction(Pgen)
7 Childrengen = CrossOver(Parentsgen)
8 InfluenceFunction(Childrengen, b)
9 Pgen+1 = SelectNextGen(Pgen, Childrengen)

10 gen = gen + 1
11 CalculateFitness(Pgen)
12 AcceptanceFunction(Pgen , b)
13 end

the belief space represents the beliefs of a community or society. Information exchange

between the population and the belief space is controlled by the communication protocol

(See Figure 2.6). The communication protocol controls how the population affects the

belief space, called the acceptance function, and, conversely, how the belief space affects

the population, called the influence function. While the implementation of the accep-

tance and influence functions are largely problem dependant, Chung and Reynolds [97]

provide examples such as specialization and generalization for acceptance functions and

boundary mutation and heuristic crossover for influence functions to name a few.

In the context of Agent-based Modelling, CAs can be used for both parameter tuning

and to introduce adaptive-behaviour. CAs can be implemented in a variety of different

ways. Traditional CAs used genetic programming while newer CA implementations have

transitioned to separating the population into two classes, the elites and the commoners,

which can be manipulated differently. The elites traditionally represent the best can-

didate solutions while the commoners represent the remainder of the population. The

elites are responsible for altering the belief space while the commoners’ offspring are

influenced and altered according to the belief space. The elites’ offspring may undergo

some kind of mutation to further explore the solution space [98]. Yang et al. [99] use

this concept for the development of their CA parameter tuning algorithm called the Cul-

tural Algorithm Quantum-Particle Swarm Optimizer (CAQPSO). Commoners evolved

according to a Particle Swarm Optimization (PSO) algorithm while the elites undergo a

mutation process that allows for incremental exploration of the parameter space. Omran

[98] describes a similar algorithm, called the intellects-masses optimizer (IMO), whereby

Background and Related Work 33

elites and commoners serve similar purposes but undergo a unified and simple update

procedure. Omran argues that the IMO is better than the CAQPSO due to its smaller

parameter space, making it easier to parameter tune, and the ease at which it can be

implemented, in code, when compared to the CAQPSO.

In Agent-based Modelling, CAs are particularly attractive in that they provide us with

a framework in which we can view cultural adaptation over time. Kobti et al. [100]

demonstrate this through the introduction of a belief space into a kinship network of

trading villagers in the drought ridden Central Mesa Verde region. The belief space

served as a cultural space whereby groups could generalize about an individuals tendency

to trade and where individuals could remember their own trading experiences with other

individuals. They found the introduction of the CA increased the ABM systems resilience

with respect to drought conditions while simultaneously increasing the system’s reliance

on hub nodes (villagers with many connections).

The use of networks for information exchange have been further investigated by Reynolds

and Ali [101]. They found that the introduction of a social fabric, a social network, to

influence an individual’s behaviour is dependent on the type of network topology used.

In their case, a ring topology lead to a gradual convergence around the optimal point on

the cone map while the square topology resulted in an exploratory phase which, once the

optimal point had been found, resulted in a rapid convergence around the optimal spot.

Reynolds and Ali separated the belief space into five knowledge sources. These sources

are defined in another paper, by Reynolds et al. [5], as follows:

• Normative: A set of desirable variable ranges that serve may serve as a guideline

in which individual adjustments can be made.

• Domain: Knowledge specific to the domain in which the CA is being applied to.

• Situational: A set of specific values in which specific events must occur.

• Topographical: Knowledge about the environment and search space occupied by

the individuals.

• Historic: Records of past, or important, events and actions.

A CA can incorporate any number of these knowledge sources. Interestingly, the addi-

tion of these knowledge sources results in an emergent phenomena called "Knowledge

Background and Related Work 34

Figure 2.6: A component view of a CA. (Adapted from Reynolds et al.[5])

Swarming" [102]. The phenomena is described as an emulation of a branch-and-bound

procedure whereby the candidate solutions first explore the solution space and then con-

verge to a local optima.

2.3 A Review of the State of the Art

In this Section we will review the current state of Agent-based Modelling in the Social

Sciences (Anthropology, Sociology and Archaeology for example) and several accompany-

ing fields such as Epidemiology and Disaster Management. We achieve this by reviewing

50 real-world ABM applications published from 2017 to 20212 and categorizing them by

the following metrics:

1. Research Field.

2. The ML / EC technique used (if any).

3. Purpose of ML / EC technique (if any).

4. Software package used.

5. Measures used to ensure repoducibility.
2A list of the papers used in this review and their respective categorizations can be viewed

at the following link:https://docs.google.com/spreadsheets/d/1VvGlMFn9jK_BSu5lgNmfZdPDWyBuXK_
L3UXEzGRu0Ns/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1VvGlMFn9jK_BSu5lgNmfZdPDWyBuXK_L3UXEzGRu0Ns/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1VvGlMFn9jK_BSu5lgNmfZdPDWyBuXK_L3UXEzGRu0Ns/edit?usp=sharing

Background and Related Work 35

Archaeology

22%

Disaster Management

14%

Ecology

20%

Economics

10%

Medicine

14%

Robotics

8%
Urban Planning

12%

Figure 2.7: Distribution of primary fields of research for papers reviewed.

While the collected data is by no means exhaustive, we believe it is sufficient to make

certain claims about current research trends. Our findings are presented below.

2.3.1 Agent-Based Modelling in Practice

It does not take long to discover that ABM are used in a variety of research fields. Long

gone are the days of abstract sandbox environments like Sugarscape [46] with recent

ABM design shifting towards construction through qualitative and quantitative data. A

snapshot of these research fields can be seen in Figure 2.7 where not only do we see

ABM being broadly applied across research fields like Ecology, Economics and Medicine,

we also see ABM emerging in more niche fields such as Computational Archaeology,

Disaster Management and Urban Planning. It is worth pointing out that Figure 2.7

is not meant to give a representative indication of the current distribution of ABM

research but, rather make clear the categories of papers reviewed for this discussion. For

transparency, Ecological and Economic ABM are under-represented and Archaeological

ABM are over-represented. This is due to the focus of the dissertation and should be

taken into consideration when reading this review. It is also worth mentioning that most

of the categories listed in Figure 2.7 share a great deal of overlap. For example, ABM

that fall under the Disaster Management category undoubtedly have to consider and

simulate both the ecological and economic consequences of a disaster event. Given this,

we define each category as follows:

Background and Related Work 36

1. Archaeology: ABM designed to study the underlying dynamics, such as the

emergence and evolution, of people and civilizations in ancient history.

2. Ecology: ABM with a particular focus on living organisms and their relationship

with the environment. ABM in this category often include humans as the primary

agent, although the focus of the research is typically on the impact said agents

have on their environments.

3. Economics: This refers to ABM that are primarily concerned with studying the

underlying dynamics of human influence on financial markets and supply chain

networks.

4. Robotics: ABM concerned with accessing the viability of using robots and other

autonomous entities to achieve a wide variety of goals. The development and

utilization of these models are often considered prerequisite steps in applying the

proposed autonomous entity in real-world scenarios.

5. Medicine: ABM that evaluate the effectiveness of policy or treatment strategies

from a medicinal context. These ABM are often used in the sub-field of Epidemi-

ology to evaluate the effectiveness of various policies in preventing or reducing the

spread of disease.

6. Urban Planning: ABM designed to understand both the ecological, economic and

sociopolitical impact of Urban expansion / development. These models often assess

the viability of proposed expansion plans or are used to identify the consequences

of previous policy decisions.

7. Disaster Management: ABM in this category are identifiable by their focus on

exploring the social phenomena that emerge under various types of disaster events.

They may also access the economic impact of said events.

Of the fields that are present, Medicine is the most interesting. The primary reason

for this is the emergence of COVID-19 which has also brought about the creation of

several ABMs that have been used to understand the spread of the disease as well as

the economic impact it has had on numerous countries. Despite the tragic loss of life,

COVID-19 has proven that ABM are capable of helping us understand complex social

phenomena in real-time and real-world scenarios.

Background and Related Work 37

ANN
6%

EC

18%

None

64%

Other
6%

RL
6%

Figure 2.8: Distribution of Machine Learning Algorithms used in papers reviewed.

Looking at the papers as a whole, new ABM seemingly fall into two categories: ABM

with abstract environments in which social phenomena are explored in a general sense

and ABM with highly detailed environments in which applying conceptual models is used

to understand the dynamics of said environment. These highly detailed environments

incorporate real-world data directly into the model, often through GIS layers, in an

effort to increase model fidelity. The verdict on which of these approaches is "better" is

arguably a moot point but, what is clear is that construction of ABM both in the context

of modelling environments and, more importantly, the modelling agent behaviour has

shifted from analogical modelling to empirical modelling. Although in opposition with

current trends, Drost and Vander Linden [32] argue that "Toy-Box" environments are

indeed useful for testing whether certain models from one field of research can be applied

to another.

2.3.2 Machine Learning in Agent-Based Modelling

Figure 2.8 shows the distribution of ML techniques used in the reviewed ABM. Of the 18

ABM that did use ML techniques, EC techniques were used most often. Furthermore,

2 ABM used ML for surrogate modelling, 2 used ML for parameter tuning and 14 used

ML as adaptive mechanisms. While these results are encouraging, there is a distinct

lack of adaptive-mechanisms present across the entire set of reviewed ABM. This, for

the most part, is perfectly adequate for a simple ABM. However, the ABM reviewed are

specifically concerned with examining the emergent phenomena produced by the dynamic

micro-interactions of complex-adaptive systems. A task so extraordinarily unachievable

that all ABM resort to abstraction at some point. This can be seen in Bogle and Cioffi-

Revilla’s [34] model where group collective action is abstract. This is similarly done by

Background and Related Work 38

Perret et al. [53] and in the case of Wren et al. [103], they limited the number of unique

types of terrestrial resources available to the foragers (Their model only considered plant

resources on terrestrial cells).

Simplification typically serves as a mechanism by which specific processes or emergent

behaviours can be observed in isolation. However, to ignore the adaptability of humans

is a fundamental failure to acknowledge that humans are continuously adapting to their

environments both in a personal and evolutionary sense [26]. We are by no means sug-

gesting that failure to include adaptive mechanisms invalidates any particular ABM but

rather that we believe there should be a concerted effort to include adaptive-mechanisms

within ABM modelling complex social phenomena. The benefit of adaptive mechanisms

is evident in Chliaoutakis and Chalkiadakis’ [40] paper on dynamic trade network for-

mation. An extension of previous work [25], Chliaoutakis and Chalkiadakis used utility

optimization in lieu of a traditional rule-based approach to agent decision making. This

gave agents the capability to learn about their environment which was crucial step in

determining which patches of land to farm. Additionally, their model allowed for the for-

mation of dynamic hierarchical structures based on an agent’s ability to gather resources

more efficiently than others. The flexibility of this model is rarely exhibited in a tradi-

tional rule-based ABM and in order to find a rule-based model with similar flexibility,

it often requires that numerous decision making strategies are created. A process that

both adds complexity to the model and takes additional time to implement. Adaptive

mechanisms don’t have to be introduced at the decision-making level. As exhibited by

Perret et al. [53] and Cucart-Mora et al. [104], generational adaption can also be intro-

duced. In both cases, the introduction of evolutionary mechanics allowed both models

to simulate generational agent adaption. In the case of Perret et al. [53], it allowed

them to study the formation of hierarchy and in the case of Cucart-Mora et al. [104], it

allowed them to model the extinction of the Neanderthals while retaining some of their

genetic structure found in some humans to this day. The ability of adaptive ABM to

produce emergent behaviour as well as overcome the rigid structure of traditional ABM,

exploring realms unanticipated [71] is an undeniable strength and one that should be

examined further.

The reason for the lack of adaptive ABM is unclear. In fact, there may be a number

of reasons. Firstly, the use of ABM in the Social Sciences is relatively new. This is

especially true for ABM in Archaeology and, as such, it may be the case that the field

Background and Related Work 39

has not matured to a point where modelling adaptive agents is the norm. This can be

seen in a number of financial ABM, a more mature field of research, which regularly

employ adaptive mechanisms (See Schulenberg and Ross [105], Zhang et al. [106] and

Bernard [107]). However, this was only the case once the models had progressed from

analogical models, similar to Sugarscape [46], to models built using empirical data [108]

(stock market data for example). This can also be seen in the field of Robotics where EC

is often used to evolve different and desirable robot behaviour [109]. We believe a similar

phenomena can be observed in current ABM where modellers are starting to utilize real-

world data to not only guide their design process but further increase the fidelity of their

model as well. It may simply be the case that adaptive ABM are the next stage in the

developmental process of ABM as a form of computational Social Science.

Another two, although speculative, reasons for the lack of adaptive ABM relate to the

general unfamiliarity of researchers with ABM as a method of computer modelling and

the notion that the current state of ABM is emblematic of the popularity of the Keep-It-

Simple-Stupid (KISS) design methodology. With regards to the former, Romanowska [1]

and Janssen et al. [110] note that Agent-Based Modelling is seldom taught as a method

of computational modelling in a standard Archaeology curriculum. This, in combination

with the added complexity that adaptive-mechanisms, especially ML techniques, incur

on the modelling process may mean that the average Social Scientist is ill-equipped to

design adaptive ABM. With regards to the latter, the KISS methodology, as proposed

by Axelrod [111] in the late 1990s, has had an undeniable influence on the design of

ABM. The KISS methodology advocates that models be kept as simple as possible with

complexity being added when absolutely necessary. This design philosophy is indeed

attractive when the unpredictability of ABM needs to be considered. However, Edmonds

and Moss [112], the originators of the Keep-It-Descriptive-Stupid (KIDS) approach, note

that it is often the case that modellers, even when faced with complex phenomena, strive

to keep their model as simple as possible. This statement can quite easily be applied to

that of adaptive ABM when modelling complex social processes. Adaptive-mechanisms

add complexity to a model that not only increase its development time but go against

the KISS principles upon which the model has been built. Taking into account that even

simple stochastic rule-based ABM can produce quite interesting emergent behaviour, it

is quite easy to rationalize that adaptive-mechanisms are unnecessarily complex despite

being a fundamentally human trait.

Background and Related Work 40

This begs the question, when and why should we use adaptive-mechanisms when mod-

elling complex social processes? There is certainly an argument to be made that adaptive-

mechanisms may not be particularly useful when exploratory or "Toy Box" models are

being developed. In fact, it may even be a hindrance. However, when a model is intended

to explain the emergence of complex phenomena and inform or guide the formation of

formal hypotheses or policies particularly when the drivers of the system represent adap-

tive organisms (humans, primates and so forth), adaptive-mechanisms should be seriously

considered. The benefit of these mechanisms is undeniable. Even agents that are "hard-

coded" with multiple rule-based strategies are more advantageous than rule-based agents

with a singular strategy (See Bianchi et al. [113]). This is because adaptive ABM are

better suited at producing emergent behaviour as well as overcoming the rigid structure

of traditional ABM, exploring realms unanticipated when the model was created [71].

This statement is even more appropriate when ML techniques are used. As evident by

their success in other fields, Genetic or Cultural Algorithms (GA and CA) and Reinforce-

ment Learning (RL) are suitable techniques for introducing generational and individual

adaptation respectively (See Andreoni and Miller [114] for a model that utilized a GA

to simulate bidding error phenomena, typically observed in real world auctions, that

were unexplainable by traditional Nash Equilibrium bidding models. See Ostrowski et

al. [115] for a model that utilized a CA to adapt a near optimal pricing strategy for car

buyers in a more complex market environment. Their model was capable of developing

a more-optimal strategy than a traditional rule-based model. See Xue et al. [116] for

an example of RL used in an Iterated Prisoner’s Dilemma problem using different social

network structures in which cooperative behaviour, an atypical phenomena, emerges.).

Lastly, we believe it is also worth talking about the lack of ABM using ML as parameter

tuning mechanisms. We believe there are two reasons for this: Firstly, that the tuning of

an ABM is often given very little real estate (or none at all) in a lot of ABM literature.

This is not to say that most researchers don’t consider it an important part of the model

development process, but rather that describing what the model does and the results

it produces may be considered more important when papers have page or word count

limitations. Secondly we also believe that as ABM move away from analogical models to

empirical models, the need for using complex parameter tuning mechanisms decreases.

It is not uncommon for an ABM to have several of its input parameters already "tuned"

when the model has been constructed using significant amounts of available data. Taking

Background and Related Work 41

Custom

28%Netlogo
36%

Not Specified

20% Other
16%

Description

40%ODD
14%

Open Source

34% Open Source + ODD
12%

Figure 2.9: Distributions of Software Packages (Left) and Reproducibility measures
(Right) utilized in reviewed papers.

this into consideration, it is understandable why one might not want to use comparatively

complex parameter tuning techniques when there isn’t a need for it in the first place.

2.3.3 ABM Software Packages and Reproducibility

Figure 2.9 highlights the current state of model transparency in current ABM design.

While certainly more prevalent than it was a decade ago, the concerted effort to adopt

ODD [63–65] and ODD+D [66] as the universally accepted description protocol is still

ongoing. Whether or not an ABM uses ODD or ODD+D as a description protocol is

research field specific and although our review doesn’t capture the descriptive quality of

the non-ODD models, it is clear that as models increase in complexity, researchers should

adopt some standard description protocol in an attempt to reduce the black-box nature

of current ABM research. Further work in this regard has been done by Romanowska

et al. [117], Davies et al. [118] and Crabtree et al. [119] who wrote a three part series

for non-specialists on how to design ABM, how to combine ABM with GIS and how to

present ABM to the public respectively.

Figure 2.9 also shares some additional insights with us about what software packages are

being used to implement ABM. Netlogo and custom solutions are by far the most popular

with niche packages such as Anylogic3 and GAMA4 used when the researchers have a

specific goal in mind. Custom solutions are often built in Python which is interesting

given that Mesa5 exists.
3Anylogic is a simulation modelling software package available at: https://www.anylogic.com/
4GAMA is a modeling and simulation development environment for building spatially explicit agent-

based simulations available at: https://gama-platform.org/
5Mesa is an Apache2 licensed agent-based modeling (or ABM) framework in Python available at:

https://mesa.readthedocs.io/en/latest/

https://www.anylogic.com/
https://gama-platform.org/
https://mesa.readthedocs.io/en/latest/

Background and Related Work 42

Another interesting facet of these results to consider is the implication software homog-

enization has on the necessity of standardized descriptive reproducibility measures. As

seen in Figure 2.9, most of the ABM reviewed were open sourced. One could quite easily

argue that open sourcing an ABM removes or reduces the need for a unified description

protocol. It is indeed true that having access to the same source code as the model’s

authors provides a level of clarity to their design decisions that one may not be able to

replicate in written text. Further considering this notion, we would argue that this is

only the case when the software used to develop ABM is homogenized. In a world where

everyone uses Netlogo to develop ABM, the need for ODD is reduced as there exists a

unified modus operandi. Conversely, Figure 2.9 also shows that a significant number of

ABM were custom solutions which, in the context of this discussion, are heterogeneous.

We argue that unless the usage of ABM software packages are homogenized, there exists

a need for a unified description protocol, ODD or otherwise, to act as an intermediary

ensuring that ABM are not only reproducible but, reproducible across ABM software

solutions.

2.4 Discussion and Conclusions

In this chapter, we presented an extensive overview of ABM literature in the Social

Sciences. Four limitations with the state-of-the-art were identified (See Table 2.1) with

the lack of adaptive mechanisms present in most ABMs identified as an issue with no

satisfactory solution. The reason for this phenomena is not entirely clear but, history

points to the relative infancy of ABM literature in the Social Sciences with other, more

mature, fields (Economics most notably) having followed a similar trajectory from sim-

ple analogical models to data-oriented models with adaptive mechanisms. Furthermore,

models are also deliberately kept simple to minimize unpredictability. This, in combi-

nation with the emergent behaviour even simple models are capable of producing, has

seemingly resulted in adaptive-mechanisms appearing as unnecessary complexities.

We argue that the state-of-the-art is insufficient given the subject matter. Using ABM in

scenario-based experimentation is arguably the most useful to social scientists where the

evolution of collectives may be evaluated under various conditions (derived from data

or otherwise) to better inform policy decisions and support or oppose theories about

the evolution of said collectives. In the social sciences, these collectives are human.

Background and Related Work 43

Problem Solution
ABM Suffer at Scale Distributed or Parallel Programming
ABM are Black Boxes ODD Description Protocol
ABM are Unpredictable KISS or KIDS Design Methodology

ABM Often Lack Adaptive Mechanisms No Sufficient Answer

Table 2.1: A summary of ABM limitations described in Section 2.1.5.

Technique Adaptive Mechanisms Parameter Tuning Complexity Reduction
ANNs Yes* No Yes
RL Yes No No
EAs Yes Yes No
CAs Yes Yes No

Table 2.2: A summary of Section 2.2 which introduces various ML Techniques and
their uses in the development of ABM. Note: ANNs can be used as adaptive mech-
anisms but, a suitable network architecture would need to be used (like a Deep Q-

Nework).

Adaptability is a fundamentally human trait and failure to include adaptive-mechanisms

in ABMs with human-like agents greatly reduces the applicability of the models’ results

as they fail to capture the nuance of human behaviour.

ML Algorithms were identified as suitable mechanisms for creating adaptive-agents. Ta-

ble 2.2 summarizes our findings with biologically and psychology inspired techniques

presenting the most promise. In particular, we identify RL as a suitable candidate for

introducing individual (agent) adaptation while EAs and CAs are suitable for genera-

tional adaptation. The primary advantage these ML techniques offer over simple, rule-

based, methods is that they promote agent heterogeneity while facilitating information

and strategy exchange between agents such that not only are agents capable of finding

an optimal strategy for their unique circumstances, they can also exchange information

with other agents such that they will also adopt globally optimal strategies.

When to use ML as adaptive-mechanisms is an interesting question. It could be argued

that using ML techniques are not particularly useful when exploratory or "Toy Box"

models are being developed or studied. These ML techniques may be complex, hard to

implement and provide no additional benefit over rule-based models given the simplicity

of the model itself. It is our belief that even in those scenarios, a simple adaptive mech-

anism (such as an EA) would be more beneficial than not having one at all. Similarly,

as model complexity increases, so does the need for more complex adaptive-mechanisms

Background and Related Work 44

(such as mixing a RL algorithm with an EA to facilitate both individual and generational

adaptation).

In conclusion, we have identified the lack of adaptive mechanisms in ABM studying com-

plex social phenomena as a limitation of the state-of-art. This is likely due to the relative

infancy of ABM in the Social Sciences and a general aversion to adding complexities to

model definitions. Machine Learning as adaptive-mechanisms were identified as a possi-

ble solution to this limitation with biology and psychology inspired techniques such as

Reinforcement Learning, Evolutionary Algorithms and Cultural Algorithms showing the

most promise. It is our belief that demonstrating the benefits of adaptive mechanisms

in suitably complex environments (the recreation of an Ancient Society for example) is

rife with research opportunity.

Chapter 3

Methodology

In this Chapter, we seek to illustrate how we developed an ABM to compare the efficacy

of ML adaptive-mechanisms to traditional, rule-based, approaches. To achieve this, we

identified a 4-step development process described as follows:

First, a suitable modelling framework was needed. Netlogo is the most popular but, it was

deemed a poor fit due its performance limitations at scale. We instead developed our own

framework called ECAgent that uses the Entity-Component-System (ECS) architectural

design pattern to facilitate the design of complex, large-scale, ABM (Section 3.1).

Second, we needed to find a process for designing adaptive-agents and quantifying their

adaptive capacity. Section 3.2 highlights these efforts and illustrates how we aim to design

and measure the adaptive capacity of our adaptive-agents using information exchange

networks.

Third, a suitably complex contextual backdrop was needed to truly discern the bene-

fits ML adaptive-mechanisms have over traditional, rule-based, approaches. We chose

Ancient Egypt as this backdrop due to the complex social processes associated with the

formation of the state during the Predynastic period. A comprehensive summary of these

processes is included in Section 3.3.

Lastly, using ECAgent as the development framework, Predynastic Egypt as the contex-

tual backdrop and information exchange (using RL and two EAs) to create our adaptive-

agents, we designed NeoCOOP (Neolithic Cooperation Model), an ABM that enables the

45

Methodology 46

study of the complex social processes of ancient societies with agents exhibiting varying

degrees of adaptive capacity. Section 3.4 provides a detailed description of NeoCOOP.

Note: All software developed for this thesis is open sourced and available at the following

urls:

ECAgent: https://github.com/BrandonGower-Winter/ABMECS

Simple Predator Prey: https://github.com/BrandonGower-Winter/ECAgentTutorials/

tree/master/SimplePredatorPrey

Ants Foraging Simulator: https://github.com/BrandonGower-Winter/ECAgentTutorials/

tree/master/ForagingAntSimulator/

NeoCOOP: https://github.com/BrandonGower-Winter/NeoCOOP

3.1 ECAgent - An ECS framework for developing ABM

In this section, we aim to highlight the compatibility the Entity-Component-System

architectural design pattern has with the development, deployment and scaling of ABM.

Object-oriented programming (OOP) design patterns have long dominated the ABM

landscape and our goal is demonstrate that alternative, possibly better, design patterns

exist. To do this we develop ECAgent, a Python-based ECS framework for developing

ABM applications.

Section 3.1.1 summarizes the motivations for ECAgent, Section 3.1.2 provides an overview

of ECAgent, Section 3.1.3 demonstrates the framework’s capabilities by recreating a

Simple Predator-Prey model developed by Tatara et al. [7]. Section 3.1.4 concludes with

a discussion of the current state of ECAgent and what improvements can be made in

future research endeavours.

3.1.1 Motivation

ABM are typically designed with an OOP mindset. This is largely due to analogical

compatibility. Viewing agents as objects just makes sense, even more so when adding

behaviour to these agents (the central driving force of ABM simulations) literally means

https://github.com/BrandonGower-Winter/ABMECS
https://github.com/BrandonGower-Winter/ECAgentTutorials/tree/master/SimplePredatorPrey
https://github.com/BrandonGower-Winter/ECAgentTutorials/tree/master/SimplePredatorPrey
https://github.com/BrandonGower-Winter/ECAgentTutorials/tree/master/ForagingAntSimulator/
https://github.com/BrandonGower-Winter/ECAgentTutorials/tree/master/ForagingAntSimulator/
https://github.com/BrandonGower-Winter/NeoCOOP

Methodology 47

(a)

(b)

Figure 3.1: A figure showing the difficulty of maintaining inheritance trees for certain
types of software. (a) Demonstrates that the Platypus class can’t be created without in-
heriting from both Terrestrial and Marine. (b) Shows the inelegant solution of creating

a third class called TerrestrialMarine which the Platypus class can inherit from.

adding code to an "Agent" class. Coupled with the fact that ABM are mostly developed

for fields outside the realm of traditional Computer Science, it is not surprising that

other design paradigms have not been investigated.

OOP is by no means perfect, in fact there are several deficits that arise when OOP

systems are pushed to their limits. They are:

1. The difficulty of maintaining inheritance hierarchies [6].

2. Rigid Object Categorization [6].

3. Poor Memory Utilization [120]

Methodology 48

Point 1 refers to the fact that as projects scale, so does their inheritance tree. As

demonstrated by Figure 3.1a, it can be seen that both the Terrestrial and Marine classes

inherit from a base Animal class. Elephant and Whale inherit from the Terrestrial

and Marine classes respectively. What if we wanted to add a Platypus class? This is

where the weaknesses of OOP start to rear their head. Most programming languages

do not support multiple inheritance1 so a third TerrestrialMarine class must be created

which the Platypus class must then inherit from (See Figure 3.1b). What if we now

wanted to add Airborne creatures, well the aforementioned tree maintenance issue is

compounded as we now need to consider that some creatures may be TerrestrialAirborne

or MarineAirborne, there are also creatures (such as Gannets) which possess terrestrial,

marine and airborne characteristics (i.e. TerrestrialMarineAirborne)

With regards to point 2, OOP systems do not allow objects to change type. Yes objects

may be typecast up an inheritance hierarchy but this change is superficial given that

runtime polymorphism still treats the typecast object as its original type (An Elephant

typecast to an Animal is still an Elephant).

Point 3 is only an issue for applications that instantiate lots of objects. Objects use

memory (more than simple primitives), so when thousands of similar typed objects are

being created, you incur memory overhead penalties. This is very applicable to ABM

research where cells in a grid world are often considered separate entities and therefore

separate objects. Additionally, as ABM become more complex and data-oriented, their

memory usage will rise and, at some resource limit, memory efficiency considerations

(i.e. complexity reduction) will need to be made.

This is where the Entity-Component-System (ECS) architectural design pattern comes

into play. Not attributed to any one individual, ECS arose from Games Development

and is still widely used today2. Video Games and ABM share a lot of similarities. In

fact, one could view an ABM as simply a video game where the agents are the players.

This sentiment is shared by other researchers such as Szczepanska et al. [121] where they

argue that Video Games and ABM can be viewed as highly related methodologies that

seek to achieve different things (Games for leisure, ABM for research). Video games use

ECS because they are data-intensive and require that entities (game objects) be dynamic.

Modern data-oriented ABM are also data-intensive and requite that entities (agents) be
1It is also worth mentioning that even if multiple inheritance is allowed, it is considered bad practice.
2The two most popular game development engines Unity3D and Unreal Engine use variations of ECS.

Methodology 49

dynamic. At the very least, this commonality warrants that ECS be considered as a

design pattern for developing ABM.

As seen in Figure 3.2, a typical ECS framework consists of three main elements [122]:

• Entities: An entity is just a unique identifier with a container of components. It

does not have any logic as its only purpose is to keep track of which components

said entity currently possesses.

• Components: A component is a plain-old-data (POD) class that encapsulates

data associated with a particular part of a program (e.g. A ResourceComponent

may be associated with an entity that can gather and consume resources). Com-

ponents traditionally do not implement any logic either and are dynamic meaning

that they may be removed or added to an entity during the execution cycle of the

program.

• Systems: Systems are the real "meat" of the design pattern. They run in fixed

order and execute program logic using components (A ResourceSystem might act

upon ResourceComponents). In order for an agent to be ’seen’ by a system, it must

just have the appropriate components.

In ECS, composition is favoured over inheritance. That is to say that if you want to add

functionality to an entity, you simply give it the appropriate components as opposed to

the OOP method of inheriting from some base class that encapsulates the functionality.

This completely removes the need to manage complex inheritance hierarchies given that

there are no inheritance hierarchies to begin with. Similarly, if you want add or remove

behaviour from an entity, you simply add or remove the appropriate component(s) given

that the systems act upon the components directly, not the entities. This allows for

extremely flexible and scalable systems.

With regards to memory efficiency, mature ECS frameworks may forgo objects entirely

in favour of storing component data in large contiguous arrays. This greatly increases

memory efficiency as all object related bloat is removed and the likelihood of incurring

cache misses are reduced. It is worth pointing out that these object-less ECS frameworks

are incredibly difficult to implement and if careful consideration is not made with regards

to the accessibility of the system, it may be completely unusable to non-specialists.

Methodology 50

Figure 3.2: The structure of a typical ECS framework. Adapted from Hatledal et al.
[6].

3.1.2 Framework

ECAgent is a Python-based framework for creating ABMs. Python was chosen because

it is easy to learn, has a plethora of packages that can be easily integrated into any

Python program, and when performance is of concern, can directly interface with shared

libraries written in C for maximum performance. Figure 3.3 shows a high-level overview

of ECAgent. For the most part, the general guiding principle of ECAgent is that Agents

in ABMs and Entities in ECS are, from an abstract perspective, functionally equivalent.

3.1.2.1 Model

The Model class is just a wrapper for all of ECAgent. It contains an Environment for

the Agents to occupy, a SystemsManager for managing the execution order of Systems,

a Logger for storing data logs of a model’s run and a pseudorandom number generator

for if users was to introduce reproducible stochasticity to their models.

This Model class is intended to be inherited from with users adding Agents and Systems

to the Environment and SystemsManager (respectively) as necessary.

Methodology 51

Figure 3.3: High-level overview of ECAgent.

3.1.2.2 Agents (Entities)

Agents in ECAgent follow the same design principles as Entities in typical ECS frame-

works. Their only function is to be uniquely identifiable Component containers. As

such, the Agent class simply contains a unique identifier (id) and a list of Components

attached to the Agent. If a user wants to add a component to an agent, they can simply

call the addComponent method and, conversely, if they want to remove a component

from an agent, they can call the removeComponent method.

The container used for the components is a dictionary. It uses the Type of the Component

as the key and the actual component as the value. This means that it is not possible

to add two components of the same type to an agent (i.e. An agent can’t have two

ResourceComponents). This design decision is largely motivated by the fact that we

could not think of many circumstances where an agent would need more than one of

a given component. Secondly, this implementation facilitates runtime debugging by

throwing an error if an agent is given two of the same components.

Methodology 52

3.1.2.3 Environment

As noted in Section 2.1.3, ABM environments are not clearly defined. They can be

void of characteristics or incredibly detailed recreations of real-world locations. Dis-

cretized multi-dimensional lattices or graph structures are common (The former called a

LineWorld, GridWorld or CubeWorld depending on the dimensions in ECAgent). ECS

frameworks do not have typically have environments (Entities are simply stored in a

container managed by the framework itself) so there is no clear solution to this problem.

In ECAgent, an Environment is considered an Agent. Specifically, it is a special type

of agent that is responsible for keeping track of all agents occupying said environment.

Every Model keeps a reference to at least one Environment. Users can then add an Agent

to the environment by calling the addAgent method. Similarly, an agent can be removed

from the environment using the removeAgent method.

The motivation for making the environment an Agent is twofold. First, the environment

is often considered an entity in many ABM applications with some modellers going

so far as to consider each cell on a grid world as a separate entity. By making the

environment a specialized type of Agent, it is capable of storing Components and having

Systems act upon it (Using the same addComponent and removeComponent methods

used by Agents). Secondly, ECAgent provides a special type of component called a

cell component for the aforementioned discrete multi-dimensional lattice environments.

Unlike OOP methods, these cells are not objects but rather Numpy ndarrays stored in a

Pandas dataframe. Each row in the dataframe represents a different cell component and

each column stores the values of said component for each cell in the environment. Cell

components are added using the addCellComponent method exclusive to the LineWorld,

GridWorld and CubeWorld environment types. Furthermore, Figure 3.4 demonstrates

the distinction between standard Components and cell components. By leveraging a pure

data-oriented approach offered by Numpy and Pandas, modellers can make use of code

vectorization and be more memory efficient.

Lastly, the Environment class also stores agents using a dictionary where the agent’s

id is the key and the agent object is the value. This was done for the same reason as

noted above, it makes runtime debugging easier as it is impossible to add an agent to

the environment twice.

Methodology 53

Figure 3.4: A figure showing the difference between regular Components (left) and
cell components (right). A Component is a POD object that stores some number
of properties whereas cell components are stored contiguously as rows in a Pandas

dataframe for a discrete lattice environment of some arbitrary size.

3.1.2.4 Systems

As noted above, systems are the "meat" of any ECS architecture as they contain program

logic and execute said logic on the one or more types of components. In ECAgent, a

System is defined by several properties:

• id: A unique identifier for the system.

• priority: An integer value that determines the order of execution of the model’s

systems. A higher value means earlier execution in an iteration. This value defaults

to 0.

• frequency: An integer value that determines how often a system should run for.

A value of 5 means that the system will execute every 5 iterations.

• start: An integer that determines at which iteration the system will start executing

from. This value defaults to 0.

• end: An integer that determines at which iteration the system should stop exe-

cuting. This value defaults to the value of Python’s sys.maxsize.

All Systems are maintained by the SystemManager. The SystemManager is stored as

a local variable of the Model and systems can be added or removed from the model by

calling the SystemManager ’s addSystem and removeSystem methods respectively.

Methodology 54

When users implement their own Systems, they must inherit from the base System class

and overload the execute method. All program logic for a single iteration must be written

or called from within this method which the SystemManager will automatically call when

the executeSystems method is called by the user in their main loop.

Like Agents, a System’s identifier is not type based as with Components. This makes it

possible for a model to hold two of the same systems (possibly with two different input

parameters) as long as they have different ids. The motivation for this what that we

could see a world in which the same system could be used to apply different logic to

components depending on the timestep of the model run.

Lastly, their is no rigid execution structure imposed by the base SystemManager. This

means that systems can be added or removed during a simulation run as well as have all

of their aforementioned properties changed and the SystemManager will automatically

update the systems’ order of execution. This can be incredibly useful if the logic of your

model needs to change dynamically based on its current state.

3.1.2.5 Other Features

There are several additional features that are offered by ECAgent :

• Collectors: These are a set of systems that automatically collect data during a

simulation run.

• ILoggable: An interface class that exposes Pythons loggers to allow users to easily

create an efficient logging system to track the status of their model.

• Decoders: A set of classes that allow you to construct models entirely from data-

interchange files such as JSON or XML.

The Collectors are just specialized Systems that store data in a local property called

records. By inheriting from Collector and overload the collect method, a user can cre-

ate a custom data collector. ECAgent also offers the AgentCollector and FileCollector

which allow for the automatic collection of agent properties and writing of data to files

respectively.

Methodology 55

The ILoggable interface gives each system access to its own Python logger3. This can be

configured to write data directly to files or to even send email notifications when large

simulations are complete. This feature is almost entirely meant for larger simulations

which take hours or days to run.

Decoders are still in their infancy but they are intended to be an entirely text-based

method for creating and executing Models. In their current state, a Decoder will read in

either a JSON or XML file (JSONDecoder and XMLDecoder respectively) and construct

the model in accordance with the parameters specified in said JSON or XML file. This

allows users to create highly reusable code given that if they want a different model

(or model with different parameters) to be created, they simply just need to point the

decoder to a different JSON or XML file. For larger simulations, one can envision sending

a data-interchange file to a decoder (via some remote connection or file transfer) which

would then automatically build and execute a model storing the results for processing.

3.1.3 Case Study: A Simple Predator-Prey Model

In order to demonstrate the capabilities of ECAgent, we decided to implement a simple

predator-prey model as described by Tatara et al. [7]. They used this model to demon-

strate the capabilities of Repast Simphony4 so, given the common goal, it was deemed

appropriate.

In this model, there are three types of entities: Sheep, Wolves and Grass. The Sheep eat

the Grass, the Wolves eat the Sheep and Grass regrows after a random amount of time.

The model is intended to show very basic population dynamics namely, the carrying

capacity of an ecosystem with predation.

As shown by Figure 3.5, this model is very easy to translate to an ECS architecture and

implement in ECAgent5. Both the Wolf and Sheep agents use energy. Given this, we

can create an Energy component like so:

3Documentation for the Python logger can be found here: https://docs.python.org/3/library/
logging.html

4Repast Simphony is a family of advanced, free, and open source agent-based modeling and simulation
platforms available at: https://repast.github.io/

5The source code for SimplePredatorPrey implemented in ECAgent is available at the following url:
https://github.com/BrandonGower-Winter/ECAgentTutorials/tree/master/SimplePredatorPrey

https://docs.python.org/3/library/logging.html
https://docs.python.org/3/library/logging.html
https://repast.github.io/
https://github.com/BrandonGower-Winter/ECAgentTutorials/tree/master/SimplePredatorPrey

Methodology 56

class EnergyComponent(Component):

def __init__(self, agent: Agent, model: Model, energy: float):

super().__init__(agent, model)

self.energy = energy

This component only stores a float variable which denotes how much energy agents with

this component have.

Given that the EnergyComponent is the only component we will need to create the mobile

(Sheep and Wolf) entities, we can now create the agents as follows:

class Sheep(Agent):

gain = 1.0

reproduce_rate = 0.01

sheep_counter = 0

def __init__(self, model: Model, energy: float = None):

super().__init__(’s{}’.format(Sheep.sheep_counter), model)

self.addComponent(

EnergyComponent(

self, model, energy if energy is not None

else model.random.random() * 2 * Sheep.gain

))

Sheep.sheep_counter += 1

class Wolf(Agent):

gain = 1.0

reproduce_rate = 0.01

wolf_counter = 0

Methodology 57

def __init__(self, model: Model, energy: float = None):

super().__init__(’w{}’.format(Wolf.wolf_counter), model)

self.addComponent(

EnergyComponent(

self, model, energy if energy is not None

else model.random.random() * 2 * Wolf.gain

))

Wolf.wolf_counter += 1

As shown above, to create the agents we create custom classes that inherit from the

base Agent class and, upon initialization, give both agent types an EnergyComponent.

The initial value of the energy is either specified by the optional energy parameter in

__init__ or it is randomly initialized.

Both the Sheep and Wolf have three class properties:

• gain: The amount of energy gained after consuming a resource.

• reproduce_rate: The rate at which the agent type reproduces (Spawns additional

agents)

• counter : An integer counter that ensures that each agent created has a unique

identifier.

Sheep agents’ ids start with ’s’ while Wolf agents’ ids start with ’w’. This just allows

us to easily identify the type of agent we are dealing with.

From a ECS design perspective, our agent implementations are complete. We have

ensured that each agent is uniquely identifiable and will have the appropriate Components

attached to it upon initialization. However, they do not have any program logic so they

do not actually do anything. To fix this, we can start adding in our Systems of which

we have identified four:

• MovementSystem: The system responsible for moving the sheep and wolves across

the environment.

Methodology 58

Figure 3.5: UML Diagram of the Simple Predator-Prey Model implemented in ECA-
gent. Classes highlighted in grey are included with ECAgent.

Methodology 59

• ResourceConsumptionSystem: The system responsible for managing the consump-

tion of new resources. This includes sheep eating grass, wolves eating sheep and

grass regrowing.

• DeathSystem: The system responsible for removing sheep and wolves with no en-

ergy remaining.

• BirthSystem: The system responsible for stochastically adding new sheep and

wolves to the simulation.

We implement the MovementSystem as follows:

class MovementSystem(System):

def __init__(self, id: str, model: Model):

super().__init__(id, model)

def execute(self):

upper_bound = self.model.environment.width -1

for agent in self.model.environment.getAgents():

Move within Moore Neighbourhood

newX = max(0, min(upper_bound, agent[PositionComponent].x

+ int(round(2* self.model.random.random() - 1))))

newY = max(0, min(upper_bound, agent[PositionComponent].y

+ int(round(2* self.model.random.random() - 1))))

Spend Energy

agent[EnergyComponent].energy -= 1

agent[PositionComponent].x = newX

agent[PositionComponent].y = newY

We create the MovementSystem by inheriting the System base class and overloading the

execute method. In this method, we iterate over every agent using Environment.getAgents().

Methodology 60

For each agent, we randomly assign it a new position within its Moore Neighbourhood.

We use model.random to ensure that the model’s psuedorandom number generator is

used.

To actually move the agents about the environment, we make use of a special component.

The PositionComponent is automatically given to every agent added to our model’s

environment. It stores the x and y coordinates of our agent which we can modify directly.

We do this by getting the PositionComponent using the index [ComponentType] operator.

This is functionally equivalent to calling Agent.getComponent(ComponentType) and is

only used as syntactic sugar. After the agent has moved, we reduce its energy (By

accessing the EnergyComponent) by 1.

The next System to create is the ResourceConsumptionSystem which is the most complex

part of the model given that it strays from traditional OOP design principles. It is

implemented as follows:

class ResourceConsumptionSystem(System):

def __init__(self, id: str, model: Model, regrow_time: int):

super().__init__(id, model)

self.regrow_time = regrow_time

def resource_generator(pos, cells):

return 1 if model.random.random() < 0.5 else 0

Generate the initial resources

model.environment.addCellComponent(’resources’,

resource_generator)

def countdown_generator(pos, cells):

return int(model.random.random() * regrow_time)

Generate the initial resources

model.environment.addCellComponent(’countdown’, countdown_generator)

Methodology 61

def execute(self):

Get resources data

cells = self.model.environment.cells

resource_cells = cells[’resources’].to_numpy()

countdown_cells = cells[’countdown’].to_numpy()

eaten_sheep = []

targets_at_pos = {}

environment = self.model.environment

Process Sheep and Wolves first

for agent in environment.getAgents():

posID = discreteGridPosToID(

agent[PositionComponent].x,

agent[PositionComponent].y,

self.model.environment.width)

Is wolf or is sheep

if agent.id.startswith(’w’):

Get all agents at position

if posID not in targets_at_pos:

targets_at_pos[posID] = environment.getAgentsAt(

agent[PositionComponent].x,

agent[PositionComponent].y)

for target in targets_at_pos[posID]:

If sheep

if target.id.startswith(’s’) and

target.id not in eaten_sheep:

Methodology 62

Mark Sheep for death

eaten_sheep.append(target.id)

agent[EnergyComponent].energy += Wolf.gain

break

elif agent.id not in eaten_sheep:

Check is grass is Alive

if resource_cells[posID] > 0:

Consume and Gain Energy

agent[EnergyComponent].energy += Sheep.gain

resource_cells[posID] = 0

Remove eaten sheep

for sheep in eaten_sheep:

environment.removeAgent(sheep)

Regrow Grass

countdown_cells[resource_cells < 1] -= 1

mask = countdown_cells < 1

resource_cells[mask] = 1

countdown_cells = numpy.where(mask, numpy.asarray(

[

int(self.model.random.random() * self.regrow_time)

for i in range(len(countdown_cells))

]), countdown_cells)

self.model.environment.cells.update(

{’resources’: resource_cells, ’countdown’: countdown_cells}

)

First, we inherit from the System base class and overload the execute method. During

Methodology 63

initialization, we set the regrow_rate input parameter which specifies the maximum num-

ber of iterations a grass entity will be inactive for. We then add two cell components to

the model using the Environment.addCellComponent method. We pass the name of the

cell components (resources and countdown respectively) and two functors which generate

the initial value of each cell. These ’generator’ functors take the position of the cell and

the cells dataframe as input. For the resources cell component, the generator randomly

returns a 0 or 1. For the countdown cell component, the generator returns a random

integer ∈ [0, regrow_time]. Both of these components (resources and countdown) rep-

resent the grass entities occupying the environment. These two components are stored in

a Pandas dataframe as contiguous Numpy arrays. We can access these arrays by calling

Environment.cells[ComponentName] as seen in the execute method.

In the execute method, we loop over every agent and determine its posID. Given that

the cell components are stored contiguously (i.e. In a 1D array), we need to convert the

agent’s position from a 2D value, into a 1D value. We do this using the discretePosToID

method included with ECAgent and store it as the posID. If the agent is a Wolf (i.e. id

starts with a ’w’), we get a list of all agents at its current position using the Environ-

ment.getAgentsAt method and loop over them. If any one of them is a Sheep, the Wolf

consumes it and gains energy equal to the value of Wold.gain. A Wolf will only eat one

Sheep at a time.

If the agent is a Sheep, it will look to see if its current cell has any resources (i.e. the grass

cell at postion posID has a resource value of 1.0). If the cell has resources, it consumes

them and gains energy equal to Sheep.gain. The resources at that current cell are then

set to 0.0.

After both agent types have eaten, all dead Sheep are removed from the environment

using Environment.removeAgent. The cells are then updated using Numpy masks and

code vectorization. This code is can be hard to understand if a user is not familiar with

Numpy but what is happening is that the countdown cell component for all cells who

currently have no resources (i.e. a resource component of 0.0) is decremented by 1.0.

We then check to see if any of these resource-less cells have reached a countdown value

of 0.0 and if so, they are given a new random countdown value ∈ [0, regrow_time] and

have their resource component set to 1.0. Because of Numpy ’s code vectorization, these

operations are applied to all cells simultaneously which is much faster than traditional

Methodology 64

OOP methods which typically evaluate each cell independently. Lastly, the new resources

and countdown values are commited to the environment using Environment.cells.update.

The DeathSystem is self explanatory. It is responsible for removing agents from the

environment when their energy is depleted. It is implemented as follows:

class DeathSystem(System):

def __init__(self, id: str, model: Model):

super().__init__(id, model)

def execute(self):

toRem = []

for agent in self.model.environment.getAgents():

if agent[EnergyComponent].energy <= 0:

toRem.append(agent.id)

for a in toRem:

self.model.environment.removeAgent(a)

Once again, we inherit from System and overload the execute method. We loop over all

agents and if their energy (which we get from by accessing the EnergyComponent) is less

than or equal to 0, we remove the agent using Environment.removeAgent. The method

takes the agent’s id as input.

Similarly, the BirthSystem is just reponsible for stochastically adding new Sheep and

Wolf agents to the environment. It is implemented as follows:

class BirthSystem(System):

def __init__(self, id: str, model: Model):

super().__init__(id, model)

def execute(self):

Methodology 65

for agent in self.model.environment.getAgents():

if agent.id.startswith(’w’) and

self.model.random.random() < Wolf.reproduce_rate:

agent[EnergyComponent].energy /= 2.0

Birth Wolf

self.model.environment.addAgent(

Wolf(

self.model,

energy=agent[EnergyComponent].energy

),

xPos = agent[PositionComponent].x,

yPos = agent[PositionComponent].y

)

elif self.model.random.random() < Sheep.reproduce_rate:

Birth Sheep

agent[EnergyComponent].energy /= 2.0

Birth Wolf

self.model.environment.addAgent(

Sheep(

self.model,

energy=agent[EnergyComponent].energy

),

xPos=agent[PositionComponent].x,

yPos=agent[PositionComponent].y

)

Yet again, we inherit from System and overload the execute method. We loop over all

agents and check to see what type of agent they are by looking at the first character of

their id. Both agents reproduce in the same way, a random number ∈ [0, 1] is generated

and if it is less than the agent type’s reproduce_rate, a new agent (of the same type) is

Methodology 66

spawned. Half the energy of the parent is given to the child agent. We add new agents

to the environment using Environment.addAgent. Lastly, the position of the child agent

is set to that of the parent’s position.

Given that we are interested in monitoring both the Sheep and Wolf populations. It is

probably worth developing a mechanism to record these values. We do that by making

use of the Collector class as follows.

class DataCollector(Collector):

def __init__(self, id: str, model):

super().__init__(id, model)

self.records = {’sheep’: [], ’wolves’: []}

def collect(self):

Count Sheep

self.records[’sheep’].append(

len([1 for a in self.model.environment.getAgents()

if a.id.startswith(’s’)]))

Count Wolves

self.records[’wolves’].append(

len([1 for a in self.model.environment.getAgents()

if a.id.startswith(’w’)]))

Collectors are a special type of system in ECAgent meant to record model or agent

properties. Here we’ve just implemented a simple Collector called DataCollector. It

inherits from Collector (not System) and overloads the collect method (not the execute

method). During initialization, we setup a dictionary that will store the population of

the sheep and wolves. When the collect method is called, we count the number of sheep

and wolves currently in the environment using simple list comprehension.

Methodology 67

With all of Systems created, we can create our predator-prey model as follows:

class PredatorPreyModel(Model):

def __init__(self, size: int, init_sheep: int, init_wolf: int,

regrow_rate: int, sheep_gain: float, wolf_gain: float,

sheep_reproduce: float, wolf_reproduce: float):

super().__init__()

Create Grid World

self.environment = GridWorld(size, size, self)

Add Systems

self.systemManager.addSystem(MovementSystem(’move’, self))

self.systemManager.addSystem(ResourceConsumptionSystem(’food’,

self, regrow_rate))

self.systemManager.addSystem(BirthSystem(’birth’, self))

self.systemManager.addSystem(DeathSystem(’death’, self))

self.systemManager.addSystem(DataCollector(’collector’, self))

Parameterize Agents

Wolf.gain = wolf_gain

Sheep.gain = sheep_gain

Wolf.reproduce_rate = wolf_reproduce

Sheep.reproduce_rate = sheep_reproduce

Create Agents at random locations

for _ in range(init_sheep):

Methodology 68

self.environment.addAgent(

Sheep(self),

xPos = self.random.randint(0, size - 1),

yPos = self.random.randint(0, size - 1)

)

for _ in range(init_wolf):

self.environment.addAgent(

Wolf(self),

xPos = self.random.randint(0, size - 1),

yPos = self.random.randint(0, size - 1)

)

We create the PredatorPreyModel model by inheriting from Model. Upon initialization,

the model accepts eight input parameters:

1. Size: The size of the grid world. This value dictates both the width and height of

the grid world (i.e. The grid world is square).

2. Initial Sheep: The number of Sheep agents to initialize.

3. Initial Wolves: The number of Wolf agents to initialize.

4. Regrowth rate: The max number of iterations it will take for a grass cell to regrow.

5. Sheep Gain: The amount of energy a Sheep gains when it consumes a grass cell.

6. Wolf Gain: The amount of energy a Wolf gains when it consumes a Sheep.

7. Sheep Reproduction Rate: The rate at which Sheep agents spawn additional Sheep

agents.

8. Wolf Reproduction Rate: The rate at which Wolf agents spawn additional Wolf

agents.

These are the same parameters specified by Tatara et al. [7] and are intended to be user

configurable. The first thing we do is create the GridWorld that the agents will occupy.

The Model class adds a VoidWorld (dimensionless) environment by default. By creating

Methodology 69

Parameter Value
Size 50

Grass Regrowth Rate 30 (iterations)
Initial Sheep 100
Initial Wolves 50
Sheep Gain 4

Sheep Reproduce 4%
Wolf Gain 25

Wolf Reproduce 6%

Table 3.1: Input Parameters of the Simple Predator Prey Model. These values are
exactly the same as those presented in Tatara et al. [7].

the GridWorld, we ensure that any agents added to the environment will automatically

get a PositionComponent attached to them. We can also now create cell components

which are not available in VoidWorlds. The size of the GridWorld is set to be the value

of the size parameter.

Each System is added using the SystemManager.addSystem method and given a unique

string id. We do not specify the priority, frequency, start or end properties is this case.

This is because we want our Systems to execute every iteration, from iteration zero until

the end of the simulation run. By not specifying a priority, the SystemManager treats

the execution order as ’first-come first serve’ meaning that MovementSystem will always

execute first and the DataCollector will always execute last.

We then specify some of the other user configurable properties gain and reproduce for

both the Sheep and Wolf agent types and create our agents (and add them to envi-

ronment) using the Environment.addAgent method. Each agent’s position is randomly

assigned to somewhere on the grid world.

3.1.3.1 Validation

In order to validate that the model was producing expected results, we ran the model

using input parameters listed in Table 3.1 with a seed of 345968. The model ran for 1000

iterations and the results are presented in Figures 3.6 and 3.7.

Looking at figure 3.6, we can see that the model is indeed behaving as expected, there

are clear oscillations in the Sheep and Wolf populations. They are also clearly related

with Sheep population loss occurring during Wolf population gains. Conversely, Wolf

Methodology 70

Figure 3.6: Wolf and Sheep populations simulated over 1000 iterations.

(a) (b) (c)

Figure 3.7: Figures of the Predator-Prey model at t = 0 (a), t = 400 (b) and t = 600
(c). Grass cells are green if they have resources and light yellow if they are empty.

Sheep are represented as black pixels and Wolves are red.

Methodology 71

population loss (as a result of a low Sheep population) causes gains in the Sheep pop-

ulation. This if further confirmed by looking at Figure 3.7 where we can visually see

changes in the Sheep and Wolf populations as the simulation progresses6.

3.1.4 Discussion

In this section, we sought to demonstrate the applicability of the ECS design pattern

for creating ABM. The primary motivation for this was that traditional OOP design

patterns were limiting when it came to making truly data-oriented applications. ABM

are becoming increasingly data-oriented and, if adaptive-mechanisms (ML or otherwise

which are data-oriented by their very nature) are truly to be adopted by the mainstream,

an alternative design paradigm (ECS) is needed. We achieved our goals by developing

ECAgent, a Python-based ECS framework for developing ABM and using it to create a

simple predator-prey model based on work by Tatara et al. [7]. Overall, we consider the

entire process a success and discuss the advantages, limitations and future prospects of

ECAgent below.

First and foremost, it was quite surprising to see just how analogically compatible ECS

design principles were with ABM development. We do not claim that they are more ana-

logically compatible than OOP design principles but, viewing entities and components as

the biological or cultural makeup of the agent and the systems as the processes or actions

the agents executes is, in our opinion, both effective and appropriate. Additionally, the

predator-prey model is both scalable and can easily be adapted without worrying about

creating conflicts in the code base. If a user wanted to add a new agent type, that could

easily be done and replacing or reorganizing one or more of the systems is trivial. We

attribute this directly to the ECS design pattern.

One benefit that is not obvious in the predator-prey model but is relevant to ECAgent as

whole is how easy it is to incorporate any Python library into a custom model. Numpy

and Pandas are already used by ECAgent but if a user wanted to use a ML library, such

as Pytorch, it would as trivial as ensuring the package is installed (using PIP for example)

and that the appropriate modules have been imported. This benefit is understated but, it

arguably ECAgent ’s greatest strength. This is also true interfacing with C code (custom

or library-based). Standard Python is known to perform quite poorly but, using Cython
6A video of this entire simulation run is available at: https://youtu.be/aoGbJh6hxxk

https://youtu.be/aoGbJh6hxxk

Methodology 72

or otherwise, a modeller could relatively easily interface with memory efficient and, more

importantly, fast code written in C.

Despite these promising results, creating the predator-prey model did illuminate some

of ECAgent ’s limitations. The foremost issue in this regard is the infancy of codebase.

There are a lot of quality of life (QoL) features that ECAgent needs before it would ever

see mainstream adoption. Verbose documentation, a suite of introductory tutorials and

general ABM features (such as agent shuffling) are but a few of these requirements. In

fact, the lack of a dedicated visual interface would immediately make some modellers not

consider using ECAgent. It is also worth mentioning that data-oriented programming is

a huge paradigm shift from OOP and could be very difficult to grasp for non-specialists.

This issue is most evident in the updating of the cell components. Given that operations

are performed on all the components at the same time, there are times where it can be

difficult to figure out how to do that most effectively.

Future prospects for ECAgent include adding a robust visual interface, adopting a more

data-oriented approach to entity design and supporting vectorization on regular compo-

nents. Given that the current implementation of entities and components is object-based,

effort should be made to uncover the best method for incorporating these data-oriented

features while maintaining user friendliness. QoL features such as entity tags, class

components (components for an entire class not just a single entity) and general per-

formance improvements (such as moving the core framework to Cython) would also be

beneficial. Nevertheless, we believe ECAgent is already capable of facilitating the design

of real-world, complex, ABM.

3.2 Designing Adaptive-Agents using Information Exchange

In Agent-based Modelling, adaptability refers to the ability of agents to not only modify

the actions they take but, also the strategies they use to determine which actions to take

[4]. Implementing adaptive-agents is a complex task. This is, in part, because there is

no formal approach to creating them. Similarly, determining if an agent is adaptive and,

if so, quantifying its adaptive capacity is equally ambiguous.

In this section, we aim to address these issues by defining what adaptability is (Section

3.2.1), how it can be measured (Section 3.2.2) and how adaptability can be viewed as

Methodology 73

simply the capacity to exchange information (Section 3.2.3). We then formally describe

how to create adaptive-agents using information exchange (Section 3.2.4) and demon-

strate the effectiveness of this approach by developing a simple adaptive ant foraging

model (Section 3.2.5). This section then concludes with a discussion (Section 3.2.6).

3.2.1 What is Adaptability?

Adaptability (or adaptive capacity) is a term that comes directly from the field of Ecology

and the study of the resilience of Social-Ecological Systems (SES). The future trajectories

of SESs are defined by three related attributes [123, 124] :

• Resilience: The capacity of a system to absorb disturbance and reorganize while

undergoing change such that its identity is retained.

• Adaptability: The capacity of entities in a system to influence resilience.

• Transformability: The capacity to transform the stability landscape of a system

such that a new system emerges when the old system is untenable.

For context, a SES is made up of a set of states. The extent to which this system remains

stable (unchanged in identity) is called the stability landscape. The stability landscape

is defined by a set of control variables which embed a system’s basin of attraction (the

states it tends towards). If a control variable’s value breaches a threshold (each control

variable has threshold levels), the system will become unstable and collapse. Resilience

is then the capacity of a system to remain stable in the face of disturbance. Adaptability

is the capacity of the entities within the system to influence (increase or decrease) the

resilience of the system while transformability refers to the capacity to transform an

unstable system into a stable one (that is distinct from its predecessor). Regime shifts or

system transformations may be active or forced. That is to say that the transformation of

a one system to another may be deliberately (active) or unintentionally (forced) induced

by the entities of a system.

In ABM literature, resilience, adaptability and transformability are seemingly grouped

under the moniker of adaptability7. This is understandable given that in ABM literature,
7A notable exception to this statement are ABM that are used to study the resilience of SESs.

Methodology 74

adaptability broadly refers to the ability of agents to modify their strategies and the

actions they take. It may not always be clear when the prerequisites for determining

transformability (when a control variable breaches a threshold) have been met. Thus,

simply referring to it as the adaptability of the model or entity is appropriate.

For the rest of this section, we adopt the same nomenclature found in ABM literature

grouping resilience, adaptability and transformability as simply adaptability. Specifically

we adopt this notion of adaptability to entities8 at all scales.

In terms of scale, adaptability does not need to be measured on a population of entities as

a whole (general resilience). In fact, the adaptability of a particular subset of the model

can be measured. Moreover, the adaptability of a subset of the model in relation to one or

more specific system disturbances can be measured . This is known as specified resilience

[123]. This is extremely useful to ABM given that they are often scale agnostic and used

to investigate the emergent phenomena that arise as a result of specific scenarios.

3.2.2 Measuring Adaptability

As noted in Section 3.2.1, adaptability is a broadly defined term in ABM literature. This

has made it difficult for ABM literature to quantify the adaptive capacity of a model,

entity or system. However, answers can once again be found in resilience literature

where it has been noted that the multidimensional nature of resilience is not innately

quantifiable but its sub-components might be [33]. These four components, which can

be applied to the ABM definition of adaptability, are:

• Recovery: Time taken for a state variable to reach pre-disturbance event values.

• Resistance: The change in a state variable after a disturbance event.

• Persistence: Existence of an identifiable system through time. The system is

identified by its ability to maintain state variables within predefined ranges.

• Variability / Invariability: Change of a state variable over time. Often used as

a proxy for persistence.
8This is discussed later but, we use the word entity specifically. An agent is an entity but an entity

does not need to be an agent.

Methodology 75

To measure one of these components, specific state variables need to be monitored. For

example, measuring population loss and the time taken to recoup those losses after a dis-

turbance event would be an example of resistance and recovery respectively. Measuring

the evolution of resource sharing beliefs in cooperative agents would be an example of

measuring persistence and variability. Furthermore, these components are scale agnostic

meaning that they can be applied directly to the agents themselves (what is the adap-

tive capacity of this agent) or to collective representations of them (what is the adaptive

capacity of the entire population of agents).

Understanding how these components relate to the adaptability of agents is also im-

portant. An entity with more adaptive capacity will be able to resist the effects of a

disturbance event and, in the case were it is affected by said event, recover faster. Re-

lating persistence to adaptability is not as straight forward. In fact, persistence is not

a measure of adaptability but rather a measure of the mechanisms used by the entities

to achieve their adaptive capacity. If an entity maintains one state variable and changes

another to adapt to a disturbance event, both the persistence of the first and the variabil-

ity of the second variables could explain the aforementioned entity’s adaptive capacity

assuming the necessary experimentation is done before drawing any conclusions.

Lastly, we believe it is worth discussing the heuristic model of Adaptive Cycling which

modellers may be able to use to explain the adaptive process of entities in their models.

As described by Folke et al. [123], the adaptive cycle consists of four phases that typically

follow the following trajectory:

1. r-phase: Resources are abundant and resilience is high.

2. K-phase: Resources are locked-up, their is little novelty and resilience is low.

3. Ω-phase: There is a collapse and the chaotic emergent dynamics cause the undoing

of relationships and systems.

4. α-phase: A reorganization phase where novelty may prevail.

While it is possible for any phase to transition to another, the r-k dynamics typically

reflect a predictable and "slow" foreloop with the Ω-α dynamics reflecting a chaotic and

"fast" backloop that influences the dynamics of the next foreloop. ABM should not seek

to explicitly model this behaviour, it should be an emergent property that the modellers

Methodology 76

use to explain how their model, entities or systems transitioned from one identity to

another.

3.2.3 Adaptation and Information Exchange

Despite the lack of a formal approach for creating adaptive-agents, one concept that

is strikingly common when reading about adaptive-behaviour is information exchange.

Specifically, the exchange of information, biological or cultural, between one or more

entities (See Chli and De Wilde [125], Fitzhugh et al. [126] and Giuliani and Castelletti

[127] for specific examples). Utilizing information exchange, we seek to fill a gap in the

state of the art by outlining an approach for creating adaptive-agents.

For clarity, we view entities and agents separately. We consider an entity as simply a

container of state and an agent as a decision making automata. That is to say that

entities simply maintain information while agents also maintain information but are

capable of using that information to make decisions. An agent is an entity but an entity

is not necessarily an agent.

We posit that in order for an entity to facilitate adaptive-behaviour, it must be able

to both maintain and exchange state. Furthermore, if that entity is an agent, it must

explicitly utilize its state when making decisions such that when its state changes, so

might its decisions. An agent that can maintain, exchange and utilize state when making

decisions is considered an adaptive-agent9.

Given this, we can now describe how to create adaptive-agents. A lot of research already

covers designing agents that utilize and maintain state. Conceptual and cognitive models

such as BDI [74], CLARION [128], CONSUMAT [129] and PECS [2] already exist in

abundance giving modellers several options of varying complexity to choose from. We

will instead focus on the state exchanging aspect of introducing adaptability and assume

that a sufficient cognitive model for the agents has been chosen or developed.

To facilitate information (state) exchange between entities, we adopt a network-based

approach. In this network (that represents the entire ABM), entities are the nodes

(vertices) and their ability to communicate (exchange information) is defined by the
9This is explicitly referring to the Agent-based Modelling definition of adaptability. While information

exchange can facilitate the implementation of prediction, goal-orientation and learning mechanisms, they
are not required in order to create an ’adaptive-agent’ as it known in Agent-based Modelling.

Methodology 77

(a)
(b) (c)

Figure 3.8: Various types of information exchange networks. (a) Showcases an ex-
ample of direct exchange. Connections are directed meaning that Entity 1 and Entity
2 can exchange information while Entity 3 can only receive information from Entity 2
and send information to Entity 1. (b) Showcases an example of indirect exchange. Ants
do not directly exchange information amongst themselves. They instead communicate
indirectly by exchanging information with the environment entity. (c) Showcases ex-
clusive exchange whereby Entities 1, 2 and 3 are able to exchange information amongst
themselves but unable to exchange information with Entities 4, 5 and 6 which form

their own sub-network.

directed connections between them. If an entity (the source) is connected to another

entity (the target), the source entity can send information to the target entity. Given

that information exchange may be an imperfect or even transformative event, information

that travels from the source to the target is governed by a communicative function.

These communicative functions are intended to represent both the biological and cultural

processes that facilitate information exchange from one entity to another.

In essence, our proposed design process is to view the ABM as a network of intercon-

nected entities. With this approach, facilitating adaptive-behaviour is just a process of

ensuring your agents are connected to this network. The nuance to this admittingly sim-

ple approach is the flexibility is provides. Information exchange may be temporal (e.g.

information exchanged may only reflect in the target entity’s state on the next iteration)

or instantaneous (e.g. signalling for collective action). The communicative functions may

support the direct transfer of information or they may manipulate it. Additionally this

methodology facilitates adaptation arising as the result of direct, indirect and exclusive

information exchange (See Figure 3.8).

In terms of conceptual accessibility, this methodology is appropriate for both biological

and sociological ABM alike. For example, a simple reproductive network can be created

mapping the exchange of genetic information from source (parent) entities to target

Methodology 78

(child) entities. The communicative function maps this exchange and, if found desirable

by the modeller, may include mutation as a transformative process. From a sociological

perspective, social hierarchies, social circles, collective action, and many other group

functions are innately network-based in that collectives are, by definition, a group of

connected entities.

It is worth discussing state and what state means. We adopt the perspective that state

is a set of properties that represent the current ’state’ of an entity, system or model.

State properties may be tangible (resources), intangible (hunger), ephemeral (social sta-

tus) or even permanent (death). Given this, we view entities as state templates. This

means that entities themselves are just maintainers of state and different entities may

capture different subsets of the model’s global state. With this definition, collective rep-

resentation is possible (e.g. a settlement entity could exchange information with other

settlements and relay this information to its denizens) but, the communicative function

that governs that edge may need to transform the source entities’ state representation

such that it matches the target entities’ state representation.

One aspect of the model that may not be clear from the above conceptualization is that it

is possible to determine if an agent is capable of adaptation. If an agent does not receive

any information from any additional entities (i.e. There are no entities that connect

to it), adaptation will not occur. We believe this will prove beneficial in facilitating

the creation of adaptive-agents. Furthermore, similar analysis could also be applied

dynamically as the edges of the network change from one timestep to another opening

additional avenues for quantifying the adaptability of an ABM.

3.2.4 Formal Definition

Using the concepts discussed in Section 3.2.3, we formally define the process of creating

adaptive-agents using information exchange below:

Consider an ABM M at some arbitrary timestep t. We can define this ABM Mt by

a 4-tuple (St, Et, At, φt) where St ∈ S is the global state of the model at timestep t,

Et ∈ E and At ∈ A are the sets of entities and agents occupying the model at timestep t

respectively and φt ∈ φ is the set of processes (or systems) that executed at timestep t.

Methodology 79

St is defined as the values of the properties captured by the model’s global state at

timestep t. That is:

St = {p0, p1, ..., pn} ∀p ∈ Pt (3.1)

where Pt ∈ P is set of all model M ’s properties at timestep t and pn is the value of the

nth property.

An entity e ∈ Et is a state container. That means that it captures a subset of the global

state: e ⊆ St. Entities can be grouped by type k such that EK is that set of all entities

of that type.

An agent a ∈ At is defined as a 2-tuple (e, π) where e ∈ Et is the state information cap-

tured by the agent and π(e) is the policy the agent follows. We adopt the Reinforcement

Learning definition of policy whereby a policy π maps an agent’s state (e in our case) to

a probability distribution of actions [10]. Similar to entities, agents can be grouped by

type k such that Ak is the set of all agents of type k.

While the formal definition of an ABM is our own, it is generally in agreement with other

formal definitions of ABM (See page 38 of Lemos [130] for example). They key difference

between our definition of an ABM and others is that we view all processes that change

state as systems not actions. In our definition, the process of deciding and executing

actions are systems and systems, in general, may facilitate state change independent

of the actions of the agents. For example, generating climate conditions in a localized

model studying the effects of environmental stress may be implemented or viewed as a

system that acts independently of the agents’ actions.

With these prerequisites, we now define the information exchange network at timestep t

as a directed multigraph (or multidigraph) Gt ∈ G (Equation 3.2):

Gt := (Et, Ct, Lt) (3.2)

where Et is the set of entities (vertices), Ct ⊆ φt is the set of communicative functions

that govern the exchange of information between one or more entities and Lt (Equation

Methodology 80

3.3) is a mapping of directed edges between two sets of vertices X and Y given some

communicative function c ∈ Ct:

Lt : (X, c) → Y (3.3)

Both X (the source entities) and Y (the target entities) are ⊆ Et. X and Y do not need

to be mutually exclusive meaning that information propagated by entities in X using

communicative function c may also be received by entities in X if e ∈ X and e ∈ Y .

A communicative function c is defined as a mapping of one or more source entities’

properties to one or more target entities’ properties (Equation 3.4):

c : (X,Y, θ) → Z (3.4)

where X and Y are the sets of source and target entities respectively. θ is the commu-

nicative functions internal properties which may be captured by St but they do not have

to be. Z ⊆ Et+i is the new state of the target entities Y such that updating the state of

the entities in Y is written as (Equation 3.5):

Yt+i = c(Xt, Yt, θ) (3.5)

With this definition, state updates of target entities may be instantaneous (i = 0) or they

may be temporal (i > 0)10. Additionally, we apply the restriction that communicative

functions cannot map to a constant zc. This is because a communicative function that

does not consider the state of the source entities when determining the new state of the

target entities does not facilitate adaptation.

Using the above definitions, we can determine if an agent a is adaptive at timestep t if,

and only if, it can receive information from another entity. This entity cannot be itself.

10If i = 0, the definition of St changes slightly to mean the set of all possible states at timestep t
where St ⊆ S. A new value s ∈ St must then be defined to replace the original definition of St

Methodology 81

We can write that formally as a boolean function (Equation 3.6):

αt(a,E
′
t) =

 1, if deg−(a,E′t) > 0

0, else

 where E′t = {e | e ∈ Et and e 6= a} (3.6)

Where α is the boolean function that returns true if our agent is adaptive and false if

not. deg−(e, E) calculates the indegree of an entity with respect to the set of entities E

and E′t is the set of all entities in the model M at timestep t other than agent a.

We may also think of α in terms of the cardinality of the multiset produced by the

addition11 of sets Q where Q is the sets of entities produced by Lt for ordered pair (p, y)

for every entry of the Cartesian product of the power set P(Et) and set of communicative

functions Ct (Equations 3.7 and 3.8):

Q(a,Et, Ct) =
∑

(p,y)∈W

Lt(p, y) where W = (P(Et)− {a})× Ct (3.7)

αt(a,Et, Ct) =

 1, if |{q | q ∈ Q(a,Et, Ct) and q = a}| > 0

0, else

 (3.8)

Lastly, an entity e0 is capable of sending information (directly or indirectly) to another

entity en if there exists a sequence of entities Tj that starts at e0 and ends at en (Equation

3.9):

Tj(e0, en) =< e0, e1, ..., en > where ∃ ei+1 ∈ L(x, c) | i ∈ [0, n), x ⊆ Et, ei ∈ x, c ∈ Ct

(3.9)

Given that there may be several sequences that start at e0 and end at en, we denote

T (e0, en) as a function that returns the set of all these sequences. Determining if one

entity can send information to another entity is then defined as Equation 3.10.
11Specifically multiset addition such that given A = {1, 2, 3} and B = {3, 4, 5}, A+B = {1, 2, 3, 3, 4, 5}.

This would be the same as writing
∑

x∈C x where C = {A,B}

Methodology 82

σ(e0, en) =

 1, if |T (e0, en)| > 0

0, else

 (3.10)

where σ returns true if entity e0 can send information to entity en and false if not. If

σ(e0, en) ∧ σ(en, e0) = 1, we say that e0 and en are capable of exchanging information

(directly or indirectly) with each other.

Determining if information exchanges from e0 to en are direct (σ+(e0, en) = 1) or indirect

(σ−(e0, en) = 1) can be determined by Equations 3.11 and 3.12:

σ+(e0, en) =

 1, if ∃Tj(e0, en) ∈ T (e0, en) | |Tj(e0, en)| = 2

0, else

 (3.11)

σ−(e0, en) =

 1, if ∃Tj(e0, en) ∈ T (e0, en) | |Tj(e0, en)| > 2

0, else

 (3.12)

For direct exchange, we look for a sequence of entities of exactly length 2 (Tj(e0, en) =

{e0, en} specifically). For indirect exchange we look for a sequence of entities of length >2

signalling that any information that entity en receives from e0, must’ve passed through

one or more entities /∈ {e0, en}.

3.2.5 Case Study: Stigmergic Adaptation of Foraging Ants

Now that we’ve formally described how to create adaptive-agents using information ex-

change, we will demonstrate it in silico using an ABM simulating the artificial life (AL-

IFE) of foraging ants12 13. The motivation for choosing to simulate Ants mostly pertains

to their high degree of adaptive capacity and the unique method by which they exchange

information to facilitate said adaptation.

Ants communicate indirectly via a process called stigmergy. They lay down pheromones

as messages which other ants use to facilitate their decision making [131]. In its simplest

form, an ant may lay down one type of pheromone as it leaves the nest in search for food
12This model was implemented in ECAgent and is available at the following link: https://github.

com/BrandonGower-Winter/ECAgentTutorials/tree/master/ForagingAntSimulator
13The design for this model was partially inspired by the following YouTube video: https://www.

youtube.com/watch?v=X-iSQQgOd1A&t=458s&ab_channel=SebastianLague

https://github.com/BrandonGower-Winter/ECAgentTutorials/tree/master/ForagingAntSimulator
https://github.com/BrandonGower-Winter/ECAgentTutorials/tree/master/ForagingAntSimulator
https://www.youtube.com/watch?v=X-iSQQgOd1A&t=458s&ab_channel=SebastianLague
https://www.youtube.com/watch?v=X-iSQQgOd1A&t=458s&ab_channel=SebastianLague

Methodology 83

(a) Phase 1. (b) Phase 2.

Figure 3.9: The different ant hill topographies used in the model.

and another once it has found food and returns to the nest. Other ants will pick up on this

"food" pheromone and follow it to collect their own food to take back to the nest using

the "home" pheromone. This simple process is so effective at allowing ants to adapt to

both unknown and dynamic environments that it inspired a meta-heuristic optimization

algorithm called Ant Colony Optimization (ACO) which has found success in solving

a variety of static and dynamic optimization problems [132]. Furthermore, stigmergy

has been used to create adaptive-agents in the past [133] and in ABM simulating the

dynamics of evacuation procedures in disaster management scenarios [134] (where it is

called signalling).

In our model, ants will be initialized at position (24,24) of 50x50 grid-world environment

that looks like an ant nest. There will be resources dotted around the environment and

the task of the ants will be to collect and return as many of those resources as possible

within 1000 timesteps. The environment has two phases which it will cycle between

every env_switch timesteps (See Figure 3.9). If our ants are adaptive, they should still

be able to collect resources despite the change in the environment’s topography.

To create adaptive-agents, we must meet the three criteria stipulated in Section 3.2.2:

Our entities must be able to maintain state and be capable of exchanging said state with

one or more entities. Additionally, our agents must be able to utilize their state when

making decisions. In our model, there are two types of entities: Ants and environmental

Methodology 84

cells. The Ants are also capable of making decisions so they are also agents. The state

maintained by each environmental cell is categorized as follows:

1. position: A 2-tuple describing the coordinates of the cell (e.g. (10, 10)).

2. resources: The number of resources available on the cell.

3. F pheromone: The intensity of the food pheromone on the cell.

4. H pheromone: The intensity of the home pheromone on the cell.

The state maintained by the Ants are:

1. position: A 2-tuple describing which cell the ant is currently on.

2. direction: A 2-tuple describing which direction the ant is facing.

3. holding resource: A boolean describing if the ant is holding a food resource.

4. perceived pheromones: A vector containing the pheromone values the ant perceives.

These values are determined by the direction the ant is facing.

Every iteration, each ant must make a decision about which neighbouring cell to travel

to. This partly stochastic process is is based on the state of the agent and the direction it

is facing. Similarly to the approach used by Jones [135], each ant will query up to three

grid cells in the direction it is facing and choose the cell which has the highest pheromone

concentration. The type of pheromone the ant perceives depends on the state on the

ant. If the ant is carrying resources, it will use the H pheromone to determine which cell

to move to and, conversely, the ant will perceive the F pheromone if it is not currently

holding any resources. Lastly, a wander factor ∈ [0, 1.0] can be defined to determine the

probability that the ant will take a random action instead (See Figure 3.10 to see what

an ant’s perception cone looks like).

The last thing we need to do is create an information exchange network, describe its

connectivity and define the set of communicative functions that govern how information

travels from entity to another. At a given timestep t, the entities (vertices) in our model

are the 2500 environment cells and the n (user defined) ants. Ants send information

to an environment cell (at the same location as the ant) by depositing pheromones.

Methodology 85

Figure 3.10: A Figure demonstrating the perception cone of the Ant agents. The red
pixels are ant agents and the orange pixels are the cells they query to determine which

path to follow.

Environment cells send information to the Ants via the ant’s perception function and, if

a user chooses, an environment cell may send information to itself decaying the amount

of pheromones on a given cell by the user defined decay_rate parameter. Figure 3.11

demonstrates the connectivity of the model’s information exchange network14 and we

list the set of communicative functions as follows:

1. deposit : A function that deposits pheromones on environment cells at the loca-

tion of Ant agents in accordance with the deposit_rate parameter. The type of

pheromone deposited depends on the state of the Ant with an ant depositing H

pheromones when looking for resources and F pheromones when carrying resources.

2. perceive: A function that sends the environmental cell pheromone intensities to an

Ant agent. The selected cells depend on the Ant’s perception cone. The type of

pheromone perceived depends on the state of the Ant with an ant perceiving F

pheromone when looking for resources and H pheromone when carrying resources.

3. decay : A function that, every iteration, decays the amount of pheromone (both

types) at a given environmental cell in accordance with the decay_rate parameter.

14The Ant icon in Figure 3.11 was provided by Freepik using the standard Flaticon license: https:
//www.flaticon.com/free-icons/ant

https://www.flaticon.com/free-icons/ant
https://www.flaticon.com/free-icons/ant

Methodology 86

Figure 3.11: The information exchange network of the Foraging Ant Model. Ants
deposit pheromones onto grid cells they visit. They perceive the pheromones on grid
cells in the direction they’re facing and, if enabled, the environment will decay the
amount of pheromones on each of its grid cells in accordance with the decay_factor.

Using the formal description provided in Section 3.2.4 and Figure 3.11 as reference, we

can confirm that our Ants agents are adaptive (α(a,Et, Ct) = 1) because they are capa-

ble of receiving information from environment cells. Additionally, our ants are directly

connected to an environment cell σ+(a, ecell) = 1 (and vice versa) if they share the same

position. Ants are also connected indirectly σ−(a1, a2) = 1 as they are forced to use

an environment cell if they wish to exchange information. Lastly, an alternative view of

model’s information exchange network similar to Figure 3.8b can be created where the

indirect exchange between the ants can be more clearly observed.

3.2.5.1 Validation

To validate the model, we performed scenario-based experimentation whereby we com-

pared two-types of information exchanging ant-types to purely stochastic ants. The first

two ant-types are called ’with decay’ and ’no decay’ because of the inclusion and exclu-

sion of the decay communicative function respectively. The purely stochastic ant-type is

called ’random search’ because that is essentially the behaviour of the ants when they

are not allowed to deposit or perceive pheromones.

The first scenario instantiates ants (using one of the network-types described above) into

a static environment (Figure 3.9a specifically) and measured the amount of resources

collected by each agent-type. This is repeated in scenario two except at timestep 500,

the environment will change to Figure 3.9b. For each scenario, 50 simulations were run

for each ant-type for a total of 300 simulation runs. A pseudorandom number generator

Methodology 87

Parameter Random Search No Decay With Decay
Iterations (t) 1000

Number of Ants (n) 300
Random Action 100% 5% 5%

Pheromone Deposit 0.0 0.25 0.25
Pheromone Decay 0.0 1.0 0.9

Table 3.2: Parameters used in Foraging Ant Simulations.

(a) (b)

Figure 3.12: Number of collected resources for each Ant-type across both the static
(a) and dynamic (b) scenarios.

was used to ensure reproducibility. Table 3.2 includes a list of initialization parameters

used by the model. The motivations for choosing these parameters values were mostly

arbitrary or fixed by design. For example, the random search ants must, by design,

always take random actions. The exception to this is the Pheromone Decay property

for the ’with decay’ ants where a one-factor-at-a-time (OFAT) sensitivity analysis of the

parameter motivated us to choose a value of 0.9.

Looking at Figures 3.12, we see that the ’random search’ ants collected the fewest re-

sources while the ’with decay’ ants collected the most. Interestingly, the ’with decay’

agents were able to collect even more resources in the dynamic environment (scenario

2). This is attributed the more complex information exchange network that allowed

pheromones along the blocked tunnels to dissipate allowing the ants to find a new

path back to the nest. These aforementioned results are expected as the inclusion of

pheromone decay facilitates increased information exchange thus increasing the oppor-

tunity for the agents to exhibit adaptive behaviour. Figures 3.13 demonstrate the typical

run of the ’with decay’ ants15 including a looping emergent phenomena whereby ants get
15A video of this run can be viewed at the following url: https://youtu.be/9GRKxAp2ghg

https://youtu.be/9GRKxAp2ghg

Methodology 88

(a) (b)

(c) (d)

(e) (f)

Figure 3.13: Figures showcasing the ’with decay’ Ants at various stages in a typical
model run. Red pixels are ants looking for resources, blue pixels are ants carrying

resources and green pixels are cells that contain resources.

stuck following each others paths in a circular manner. This is a documented behaviour

in real-world ants called an ant milling.

Figures 3.14 plot the rate of resource collection for each ant type. This can be used

to study the resistance and recovery of the ant-types. Both the adaptive ant types

are disturbed by the environment phase change equally (from approximately timestep

500-650) but, the ’with decay’ agent is able to recover past its pre-disturbance rate of

resource collection to a greater degree than the ’no decay’ ants. To demonstrate why

Methodology 89

(a) (b)

Figure 3.14: Rate of resource collection for each Ant-type across both the static (a)
and dynamic (b) scenarios.

this occurs, we plot the persistence of the pheromone intensity of the ’with decay’ ants

at timestep 500 (before the phase switch) and at timestep 1000 (Figure 3.15). We can

see that by timestep 1000, the ’with decay’ ants reinforce the primary path that spans

the width of the environment and make new paths that were not possible in the phase 1

environment. The emergence of these new paths follows the adaptive-cycle discussed in

Section 3.2.2. An a −K phase can be observed from iterations 1-499 whereby the ants

freely and effectively collect resources and then get trapped into using the pheromone

paths demonstrated in Figure 3.13c. Once the disturbance event occurs in the form of

an environment change (Figure 3.13d), an Ω−α phase occurs whereby some of the paths

the ants used to collect resources become blocked and cause the ants to scatter (Figure

3.13e). This phase is brief (typically between 50-150 timesteps) and leads into a new

a − K phase where the ants find a new path back to the nest (Figure 3.13f showcases

this whereby a group of ants have now started collecting resources from the cavern to

the left of their nest. Some ants have also started collecting resources from the bottom

right resource patch).

3.2.6 Discussion

In this section we sought to fill a gap in the state of the art by using information exchange

networks to facilitate the creation of adaptive-agents. In resilience research, adaptability

refers to the ability of an entity or system to increase or decrease its resilience. In

Agent-based Modelling, adaptability refers to an agent’s ability to not only change its

decisions but also the strategy it uses to make decisions. Adopting the ABM definition

Methodology 90

(a) (b)

Figure 3.15: The pheromone intensity of the ’with decay’ ant type at timestep 500
(a) and timestep 1000 (b).

of adaptability, we examined how adaptability could be measured by monitoring the

resistance, recovery, persistence and variability of one or more agent or model properties.

We then proposed an approach for defining and implementing adaptive agents using an

information exchange network. With entities defined as state containers, and agents

as decision making automata, we formally defined the process of creating a directed

multigraph governed by communicative functions. Using this approach, determining

if agents are adaptive or connected (directly or indirectly) were formulated as graph

traversal problems with adaptive-agents being defined as agents capable of receiving

information (an indegree > 0) from entities other than themselves.

We then demonstrated the applicability of this approach by implementing a simple for-

aging ant simulator. We empirically demonstrated that agents capable of information

exchange are capable of exhibiting greater adaptive capacity in both static and dynamic

environments.

One point of contention that we foresee regards the simplicity of the ant foraging model.

It could easily be argued that the results observed were both predictable and uninfor-

mative. It is glaringly obvious that agents that exhibit even slightly more advanced

decision making processes would perform better than purely stochastic ones. That is, for

the most part, completely true but it is not the point we are trying to demonstrate. For

one, the ants’ decision making process is the same for all agent-types. The only aspect

that changes is their capacity to exchange information. Secondly, these experiments are

intended to be an analogical representation of the current state of ABM research. We

Methodology 91

have argued that as researchers move from simple toy-box models to complex data-driven

models, the need for adaptive-agents will become more apparent. In our analogy, the

static environment represents the toy-box models and the dynamic environment rep-

resents these newer complex models. Even in the triviality of the static environment

scenario, the benefits of adaptive-agents are clear. The ’no decay’ and ’with decay’ ants

are able to collect more resources because they exchange information indirectly through

stigmergy. The benefit of adaptive-agents in the dynamic environment is even more ap-

parent with the ’with decay’ ants able to adapt to their environment more effectively

than the ’no decay’ and ’random search’ ants due to the increased complexity in which

information is exchanged. If the benefits of using adaptive-agents is clear in even the

simplest of circumstances, then surely that must also be the case as model complexity

increases.

One caveat to the aforementioned discussion is the diminishing returns of adaptive com-

plexity in increasingly simple environments. What we mean by this is that perpetually

adding adaptive capacity to the agents via new methods of information exchange is likely

limited by the complexity of the model. In the ants model, this could be observed in the

static (simpler) environment where the difference in the number of collected resources

between the ’with decay’ and ’no decay’ ants was not as significant as it was in the

dynamic (more complex) environment. This means that adding an unnecessary amount

of adaptive mechanisms to an agent is not beneficial and, in some cases, may even be

detrimental to the overall model as these mechanisms not only take time to implement,

but may make synthesizing the results produced by the model more challenging.

One aspect of our information exchange modelling approach that we could not demon-

strate with the ants foraging model is the plethora of graph-based heuristics that can be

used to understand agent behaviour. As described by Anderson and Dragićević [136],

some of these graph heuristics include:

1. Degree: The number of connections a vertex has to other vertices. In a directed

graph, this can be further divided into indegree and outdegree metrics which de-

scribe the number of incoming and outgoing connections respectively.

2. Average node degree: The number of connections a vertex has averaged across

all vertices in the network. This can also be divided into measure of the average

indegree and average outdegree.

Methodology 92

3. Degree distribution (P (c)): The fraction of vertices in the network which have

a degree = c. This can also be specified per agent or entity type (AK or Ek) if

looking over the entire network is inappropriate.

4. Clustering coefficient: Measure of how likely vertices connected to vertex v are

also connected to each other.

5. Average clustering coefficient: The average clustering coefficient of all the

vertices in the network. Again, this can also be specified per agent or entity type

(AK or Ek) if looking over the entire network is inappropriate.

6. Path length: The shortest sequence of nodes that connect two vertices in the

network together.

7. Average path length: The average path length between all pairs of vertices in

the entire (or a subset) network.

Additionally, our approach opens up the field of information theory as another potential

avenue by which adaptive-behaviour can be quantified and understood. Measuring the

magnitude and change in entropy of entities as they change state has potential but, was

deemed out of scope. Future work should certainly investigate the matter further.

Lastly, we believe it is worth discussing how this entire section relates to the rest of

the thesis. Given our overall goal of evaluating ML techniques as adaptive-mechanisms,

we identified that an approach for implementing and integrating the algorithms into a

model was needed. Information exchange networks were chosen because a wide variety

of the algorithms identified in Section 2.2.1 are primarily concerned with the exchange of

information. In EAs, genetic information is transferred from parent entities to children

entities. In RL, agents observe reward and value (which are both types of information)

when taking actions. Information exchange networks are capable of facilitating the design

of adaptive-agents using a variety of techniques but, they are even more appropriate

when using ML techniques. Similarly, terms such as entities and systems are taken

directly from SES literature but, they are also conveniently the terms used in ECS further

demonstrating the natural compatibility the design pattern has with ABM development.

Methodology 93

Naqada Chronology
[137]

Hassan Chronology
[138]

Absolute estimate cal.
(BC)

Badarian
Late Neolithic/Early

Predynastic 4400-3800

Naqada IA–IIB Middle Predynastic 3800/3750–3450
Naqada IIC–D Late Predynastic 3450–3325

Naqada IIIA–IIIB Terminal Predynastic 3325–3085
Naqada IIIC–D First Dynasty 3085–2867

Table 3.3: A summary of the absolute chronology of the Egyptian Predynastic with
alternative chronological terms. (Based on Stevenson [8]).

3.3 The Curios Case of Predynastic Egypt

In this section, we aim to synthesize several papers about the complex social processes

that underpinned the emergence of the Ancient Egyptian State during the Predynastic

period. There is strong iconography associated with Ancient Egypt, however, we know

very little about how it came to be. This presents an opportunity in which a sufficiently

complex ABM may be able to validate, invalidate or assist in constructing theories about

the formation of the Egyptian state. Section 3.3.1 contains a brief history of the Egyptian

state as highlighted by Brewer and Teeter [11]. Section 3.3.2 contains five theories

that pertain to the underlying causes and systems that underpinned the emergence of

Predynastic Egypt and Section 3.3.3 coalesces these theories. Table 3.3 has been included

to provide context to the timeline we are reviewing.

3.3.1 Background

In this Section we outline the chronology of the formation of the Ancient Egyptian state

during the Predynastic period as described by Brewer and Teeter [11]. Sections 3.3.1.1,

3.3.1.2 and 3.3.1.3 cover the late Neolithic, the Predynastic and Early Dynastic periods

respectively.

3.3.1.1 Neolithic Period 6000 - 4600 BC

The Neolithic Period (New Stone Age) marked a shift from the hunter-gatherer lifestyle

to one of cultivation and animal husbandry. Agriculture, which broadly describes these

two processes, formed the economic base that gave rise to all early civilizations.

Methodology 94

Figure 3.16: A map of Egypt courtesy of Wikimedia Commons user H.Seldon. Li-
censed CC BY-SA 3.0, see: https://commons.wikimedia.org/wiki/File:Faiyum_

oasis.svg.

https://commons.wikimedia.org/wiki/File:Faiyum_oasis.svg
https://commons.wikimedia.org/wiki/File:Faiyum_oasis.svg

Methodology 95

In Egypt, indisputable evidence of domesticated plants and animals have been found.

Excavations provided evidence of two distinct cultural adaptations and lifestyles (Nile

Valley, Desert). In the Nile Valley, bones of Goat, Pig, Sheep and Cattle have been

recovered from Merimde. Domestic animals and grain silos, containing wheat and two

types of barley, were found in Fayum. Evidence of animal domestication was also found in

the form of cave paintings in the western desert and, more compellingly, from excavations

in the Nabta region. The bone fragments and plant matter uncovered in the western

desert were identical to that of the wild variants found in Egypt. This leads some to

believe that this is evidence of a more opportunistic and mobile dessert lifestyle. It is

thought, in general, that late Palaeolithic and Neolithic groups maintained a hunter-

gather lifestyle supplemented by these new agricultural processes. A sedentary lifestyle

would not have been possible as the cattle and crops would not have survived the ever

increasing arid conditions.

Life along the Nile would not have changed as fish and fowl were both plentiful and

predictable. However, as the areas to the east and west of the Nile became more arid.

There was an increased movement to agriculture and attempts to get as much from the

land as possible. This was not without its disadvantages. Fewer food sources meant

that the likelihood of a famine increased. With the establishment of agriculture, villages

started appearing and growing in size. Local leaders emerged and Egypt moved into the

Predynastic period.

3.3.1.2 Predynastic Period 4650 - 3150 BC

The Predynastic period marks the cultural transformation of the Egyptian people from

Hunter Gatherers to Agricultural villages. While the timeline of this period is still

unclear, there is a clear understanding that both the North and the South had undergone

cultural evolution at different stages. The different stages of Predynastic Egypt have no

specific start and end date. They rather serve as a guideline as to what might have

occurred. The different stages (specifically in the North) may not even represent the

same cultures, but rather a series of localized cultures.

During the Fayumn and Meridem stages, there is evidence of a mixed hunter-gatherer/

farmer lifestyle which later (Towards the Naqada I/ Omari A period) developed into a

lifestyle with a greater reliance on cultivated plants and animals. Upper Egypt also seems

Methodology 96

to have developed a distinctive style of pottery while the Delta remained, largely, localized

with no distinctive style of pottery dominating. By Naqada II there is evidence of a

increasingly complex and socially stratified society emerging. Evidence of the emergence

of a social elite, fortifications and conflict can be found in artistic depictions.

By Naqada III, Egyptian centers of political powers had emerged in both Upper and

Lower Egypt (Hierakonpolis, Naqada, Maadi and Buto). It was during this time that

a definable national identity was formed with Upper Egyptian characteristics finding

their way into the Eastern Delta. By the end of the Predynastic period, most of the

country exhibited the same cultural characteristics, attesting to the gradual dominance

of the North by the South. During this period, there is evidence of local-chieftains

differentiating themselves from their subjects.

3.3.1.3 Early Dynastic Period 3050 - 2686 BC

The actual mechanism that resulted in the unification of the North and South is unknown.

Traditional views suggest a conqueror king forcibly united the North and South. With

little evidence backing this theory, a different picture is emerging whereby a number of

larger Upper-Egyptian states, that extended their power northwards, assimilated with

Northern tribes, forcefully or through alliances. Little is known about the influence that

outsiders had on this unification process. Once a king had been established, the kingdom

was separated into states overseen by a governor. Their was a culture of meritocracy and

birthright such that the humble could equal the powerful through skill and eloquence.

3.3.2 Theories

In this Section we review several theories related to the formation of Ancient Egypt during

the Predynastic period. Section 3.3.2.1 covers Anđelković’s [12] theories of political

organization through the lens of social and natural factors. Section 3.3.2.2 discusses

Allen’s [36] theory of state formation as a result of surplus economies. Section 3.3.2.3

highlights Kemp’s [139] state formation through the lens of a self-engendering complexity

generation as a result of human cognition. Section 3.3.2.4 reviews Flannery’s [140] work

on state formation through the lens of opportunistic individuals. Lastly, Section 3.3.2.5

summarizes Stevenson’s [8] phasic descriptions of state formation in Ancient Egypt.

Methodology 97

3.3.2.1 Political Organization of Egypt in the Predynastic Period

Anđelković’s [12] proposes a theory into the emergence of a unified state in Egypt over

many generations and highlights the numerous social and environmental factors that

played a role in such a phenomena. They are detailed as follows:

The Passive Natural factors: The Nile River is one of driving natural factors in the

emergence of the Egyptian state. The immediate areas along the river receive a yearly

inundation of fertilization and solar radiation. The extremely arid regions to the east

and west of the river also create a ’tube effect’ whereby the areas along the Nile river are

comparably more suitable for living than the arid regions further away from the river.

This also increases social compacting forcing communities to interact with each other.

The river provided natural fertilization and flowed constantly which prevented saliniza-

tion and the development of a swamp basin. This provided ideal conditions for agriculture

to flourish as well as allow for an extremely diverse ecosystem to thrive. The river also

provided access to water, wind and sunlight. The sunlight was ideal for farming while

the water and wind provided ideal circumstances for water-based transportation. There

are also gold bearing regions in Upper Egypt which were mined during the Predynastic

period. It is suggested that the "flesh of the gods" was an important strategic currency

used by the power centers.

Active Social factors The social setting was dominated by the idea of sacred power

blended with the concentration of military, economic and political power. By examining

the archaeological record, there is a suggestion that there was a strong belief in the

subjugation of enemies. It is likely the social elite were the centralizing force of these

systems, using there power to unify the religious, military, political and economic systems

around one ruler.

Anđelković’s proposed timeline of political organization can be summarized as follows:

1. Pre-nomes (Pre-Naqada I): These refer to independent local villages defined

by political autonomy.

2. Proto-nomes (Naqada 1A - 1B): Proto-nomes refer to a number of villages

unified under one chiefdom. This results in an increase in economic, military and

Methodology 98

political power of a number of Proto-nomes. By the ’tube effect’ and natural selec-

tion, the close proximity of villages to each other and the clearly superior military,

economic, and political power of Proto-nomes would have forced autonomous vil-

lages to unify into Proto-nomes in order to compete with their neighbours.

3. Nome Pre-states (Naqada 1C - 2B): This refers to the further unification of a

number of Proto-nomes. They can be identified by the emergence of a social elite

and the comparatively lower number of Nome Pre-states compared to the number

of Proto-nomes. These social structures indicate the emergence of state to come

whereby a number of the Nome Pre-states will be further unified through conquest

or absorption by more-predatory neighbours.

4. The Upper Egyptian Proto-state (Naqada 2C - 2D1): This, sometimes

called the "Upper Egyptian Commonwealth", refers to the unification of the Nome

Pre-states into one identifiable polity. Expansion towards the North would most

likely have started with Nome Proto-states absorbing Northern Proto-nomes. This

period is not thought to have lasted long as the overwhelming power of the South

over the North could only result in its unification (through absorption, warfare and

cultural domination). It should be noted that the South is expected to contain a

few Nome Pre-states which would be more resistant to unification.

5. All Egyptian early state (Naqada 2D2 - 3C1): This stage refers to a unified

North and South named Dynasty 0. Possible revolts from local elites are possible

at this time.

6. Egyptian Empire (Naqada 3C1 - 3C2): At this stage their should be evidence

of a stable unified polity.

Anđelković’s theory describes a power struggle where rulers jostle for domination over

the political, economic, religious and military systems. The victor of this power struggle

would have come from Upper Egypt. This is, at least in some part, due to the smaller

livable region in the South which would have forced villages to adapt, by adopting agrar-

ian practices, earlier than the North which, as a result, would have given the South a

technological advantage.

Methodology 99

3.3.2.2 Agriculture and the Origins of the State in Ancient Egypt

In his paper, Allen [36] describes the rapid adoption of farming in Predynastic Egypt

and the unique conditions of the Egyptian landscape which allowed for the relatively fast

emergence of a unified kingdom.

The paper described crowding of the population around the Nile river. This was largely

due to arid landscapes that had become more prominent forcing the population closer

to the Nile. This limited the chance of flight (moving) amongst the population in times

of hardship as individuals would have to migrate along the river where numerous other

villages would be present. Due to Egypt’s relatively low population density, two surpluses

arose. An economic surplus in the form of grain, cattle, and other resources and a labour

surplus which allowed for the construction of the complex structures such as temples.

This was because the communities could be fed by a small amount of farmers while the

others worked on construction endeavors. Allen notes that food produced by farming

could be stored while the food produced by foragers could not. This meant taxation could

only be applied to farming villages. Additionally, farming was seasonal and foraging was

a year long ordeal. This means that farmers could participate in other activities such as

construction while foragers could not.

While the farming provided an advantage over foraging, it was not the sole reason for

the emergence of a unified state. Allen notes that Egypt, due to its low population

density, was an economic frontier. This meant that individuals had ample land to farm

for themselves. This decreases the likelihood of social and financial inequality. Allen

argues that, due to the sheer volume of land available, individuals could very easily

migrate to other tracts of open land along the Nile should they be unhappy with the

taxation or working conditions of their current situation. This limited the ability of the

social elite to extract a surplus from their workers as unfavourable working conditions

would result in the loss of workers.

There were two different dominant cultures in the North and South (Maadi and Naqada).

The South or Upper Egypt was significantly more overpopulated than that of North or

Lower Egypt. The Maadi culture was also more egalitarian than the Naqada culture

where tomb analysis has shown clear evidence of social inequality. This overpopulation

in Upper Egypt is what Allen argues is the driving factor in the domination of the Maadi

culture by the Naqada culture. Overpopulation meant the emergence of inequality. The

Methodology 100

emergence of inequality meant the propagation of the Naqada culture northwards. A

culture built upon agriculture was more beneficial than that of one built upon foraging.

The Naqada culture slowly dominated the Maadi culture as a result.

This theory might accurately describe the propagation of the Naqada culture over Egypt

but it does not describe the emergence of a social elite. As previously mentioned. The

availability of land meant that a social elite could not form due to the mobility (ability

to move to another location) of the region. Allen argues that the social elite would have

been aware of this and would have sought to restrict the movement of individuals and

thus decreasing regional mobility. Due to the surplus of labour, opportunistic individuals

could mobilize the surplus labour into a military force which could then be used to limit

the mobility of individuals. The geography of Egypt would have made this all the easier

as the arid regions surrounding the Nile were less habitable. This meant that it was

significantly easier to limit population mobility as families could not live far from the

Nile. The use of a military force meant that land-owners could force taxation becoming

increasingly wealthy. This may have also introduced a dynamic of land-owners offering

lower tax rates to encourage individuals to work for them.

Allen’s proposed series of events are as follows:

1. The desertification of the areas around the Nile force families and villages to move

towards agriculture practices as a more reliable method of survival.

2. The emergence of agriculture creates a surplus of labour and food

3. Landowners start taxing individuals who farm on their land accruing more wealth

and increasing their social status.

4. Unfavourable working/living conditions cause people in the more densely populated

Upper Egypt to move northwards where the land is more plentiful

5. At this time the landowners start competing with each other by varying tax rates

and incentives.

6. Landowners mobilize a military force to restrict the movement of individuals. This

is aided by the narrow window of livable land along the Nile.

7. At this time, those who have moved northwards bring along their agrarian culture.

Methodology 101

8. The new, farming reliant, families and villages in the North become significantly

more successful than the people, originally from the North, who forage. This

advantage causes the adoption of the Southern culture as a more beneficial way of

living.

9. During this time, it is presumed that a number of opportunistic individuals suc-

cessfully entice a large number of people to work under them. These individuals

started accruing an enormous amount of wealth and labour thus allowing them to

extend their rule over an ever expanding area gaining additional labour while doing

it.

10. The larger ’states’ then fight over complete control through enticing/forcing indi-

viduals from other states to work for them.

11. This eventually leads to a polity so large and powerful that it conquers (not nec-

essarily by military force) the entire region resulting in a unified Egypt.

3.3.2.3 Ancient Egypt: Anatomy of a Civilization

In his paper [139], Kemp describes a model for the formation of Early Egypt. Kemp calls

to question the processes and events that sought to disrupt their hunter-gatherer lifestyle

which, as a result, gave rise to the development of dominant leadership. Kemp attributes

this phenomena, observed throughout history, to the nature of human cognition and its

ability to generate complexity. Kemp describes how a set of ideas or behaviours that form

a baseline, subdivide indefinitely. This process is both self-reinforcing and facilitates its

own acceleration.

However, Kemp notes that this process propagates throughout societies unevenly. In the

context of Predynastic Egypt, the northern Nile communities followed a similar trajectory

to those in the Mediterranean, however, this process emerged significantly later on. The

uneven emergence of this process is also evident on a smaller scale with Upper Egypt’s

transition to an agrarian society earlier than Lower Egypt.

Kemp likens this process to a game of ’Monopoly’ whereby a number of individuals start

with roughly equal potential in an environment with virtually unlimited potential. The

game proceeds by chance whereby a combination of environmental and locational factors

as well as individual decision making favours of one or more individuals. The process

Methodology 102

starts slow. Much like an egalitarian society where the advantage oscillates between

a number of individuals. At some point an individual gains such an advantage that

it becomes self-reinforcing. This self-reinforcing process leads to the emergence of an

individual who is unstoppable and the only outcome is total monopolization. By moving

closer to reality, individuals represent a number of generations and the time-scale widens.

Kemp applies this process to Predynastic Egypt by illustrating the three stages of state

emergence:

1. Egalitarian Communities: These communities were small in size and relied

primarily on hunting, fishing and foraging. Although, Some communities may

have limited access to crops or cattle.

2. Agricultural Communities: These communities were the result of the merger

of a number of egalitarian communities. They relied heavily on agriculture for food

and may have even traded with other communities.

3. Proto-States: These communities were dense, fortified, had highly sophisticated

irrigation systems, traded with other communities and had distinct territorial

bounds. The emergence of a social elite meant that a number of proto-states

may have been under the rule of a single individual and thus taxes were likely to

have existed.

3.3.2.4 Process and agency in early state formation

Flannery’s [140] paper is not specifically about Egypt but rather early state formation in

general. The essay is mainly concerned with demonstrating that process and agency are

complementary in the formation of ’Pristine States’. Flannery defines ’Pristine States’

as huge, politically centralized and socially stratified.

Process: Flannery proposes the following process for state formation (based on Carneiro’s

[141] theory of chiefdom creation):

1. Defeat neighbouring villages by force

2. Incorporate them into your political unit

3. Take prisoners and work them as slaves

Methodology 103

4. Use close supporters to administer conquered territory

5. Require subjects to pay tribute

6. Require them to supply a military force in times of war

Flannery argues that the above process, combined with chiefly cycling, is capable of

giving rise to states. Chiefly cycling is the recurrent process of emergence, expansion and

fragmentation of chiefdoms. Flannery also argues that states could form in the presence

of competition from other chiefdoms. Wright [142] proposes the following process for

state formation.

1. As a result of long-term conflict, areas on the verge of statehood may have dispersed

populations that form buffer zones between chiefdoms.

2. Suddenly a rapid coalescing of the population occurs at one of the political centers.

3. Since a number of multi-layered political hierarchies are being merged, a fourth

hierarchy emerges as an administrator over all the other layers.

Upon arriving at a stagnant growth curve. Chiefs will have one of three decisions to

make. Either increase taxes, intensify production or territorial expansion. Flannery

argues that this is an accurate model for state formation and defines the ’near-state’

chiefdoms as having 2 or 3 hierarchical levels with management of areas further than a

day away being given to highly regarded individuals or family.

Agency: Additionally, Flannery outlines the requirements for an agent to cause state

formation. The requirements are as follows:

1. Be an alpha male born with an aggressive authoritarian personality.

2. Be of elite parentage but not in the main line of succession. Just close enough

enough to covet chieftainship.

3. Gain upward mobility as a military commander.

4. Usurp the position of chieftain by any means necessary.

5. Seek a competitive advantage over neighbouring chiefdoms.

Methodology 104

6. Using that advantage, expand your territories.

7. Where the environment permits. Covet your land by investing in it by building

irrigation systems, raising the population of subjects and keeping them content.

8. Where the environment does not permit, raid enemies and neighbours.

9. Solidify your position by power sharing, even if it is little more than a gesture.

The last rule is often misunderstood. It refers to the delegation of power as no single

ruler can manage all the affairs of an entire state. Who the delegates might be and where

they come from is dependent on the civilization.

Lastly, Flannery links both process and agency by way of an analogy. Just as both

mutation and natural selection are related in biological evolution so too are process and

agency in state formation. In fact, processes are often the result of long-term behavioural

patterns by a collection of individuals with agency. Mutation needs natural selection to

persist across generations. Just as the agency of chiefly individuals needs the precon-

ditions of social inequality and chiefly competition to begin the process of becoming a

king.

3.3.2.5 The Egyptian Predynastic and State Formation

In her essay [8], Stevenson synthesizes recent Predynastic Egypt literature and presents

the formation of state as five phases detailed below. Stevenson puts forth that the emer-

gence of the first dynasty was the culmination of a number of independently progressing

entities. During this process, various entities would be torn down and reconstructed over

time. Stevenson argues in favour of the view that inequality gave rose to the forma-

tion of state. She notes that their are in fact multiple possibilities for inequality. Food,

exotic goods, and knowledge to name a few. Interestingly, this also includes the idea

of ’wealth-in-people’ which describes the success of leaders not only by their ability to

secure resources and labour but also by their ability to gather and compose different sets

of knowledge.

Neolithic Egypt : Stevenson challenges the idea that Neolithic groups became sedentary

and suggests, using archaeological evidence, that the process was not as linear as once

predicted. Groups would combine hunting and farming during different seasonal periods.

Methodology 105

Farming appears to have been a method for surviving harsher conditions during certain

periods of the year. The discovery of burial grounds in the delta suggest that groups grew

attachments to specific areas of land and certain paths of travel. The mobile lifestyle

of the early communities precludes the formation of any one form of social hierarchy.

Stevenson suggests that both social differentiation and inequality were driving factors in

the flux of mobility but does not state to what degree.

Naqada IA–IIB : There is substantially more evidence of sedentary living circumstances

during this time period. This period marked the emergence of distinct material and visual

cultures between Upper and Lower Egypt. There is also evidence of social stratification

during this time. There is also evidence that structures, such as breweries, formed along

trade routes.

Naqada IIC–D : This period represented a technological revolution. New technology

allowed for new agricultural techniques as well as goods production. There was also

a shift in culture as ritual objects from the previous period all but disappeared. The

abandonment of some structures may suggest that conflict occurred during this time.

During this period foreign trade is said to have been established as well as social migration

from one locale to another. There is also evidence to suggest that Upper Egyptians

wanted to control Northern land in order to facilitate better trade with local and foreign

communities. It is also during this time that exotic goods started to be associated with

a social elite. Stevenson describes this period as one of great prosperity.

Naqada IIIA–B/C : According to Stevenson, this period represented the age of monopo-

lization and composition of both material and knowledge sources. Long standing cultural

practices started to become associated with political power. This most likely required a

monopoly over the use of force and violence. There is also evidence that the social elite

used extremely rare and exotic goods to show their power. During this time the North

Eastern Delta seems to have been densely populated

3.3.3 Putting it all together

In Section 3.3.2, we highlighted a number of theories related to state formation and, more

specifically, state formation in Predynastic Egypt. Fortunately, the theories presented

Methodology 106

share a great deal of overlap. Using Anđelković’s [12] distinction of natural and social

factors, the commonalities amongst the theories are presented as follows:

3.3.3.1 Natural Factors:

There are two distinct, but not mutually exclusive, natural factors present in a number of

the aforementioned theories. They are desertification [12, 36] and the presence of the Nile

river [12, 36]. It is easy to understand how desertification could throw Neolithic Egypt

into turmoil. Hunting and foraging was no longer a predictable process for resource

acquisition. This forced groups or villages to adapt and adopt farming as their primary

source of food. This is not unbelievable as Stevenson [8] notes, their was already evidence

of small-scale agricultural practices and although Kemp [139] argues that agricultural

practices would have appeared as a consequence of a human’s natural ability to generate

complexity, desertification could have only accelerated that process. This new found

reliance on farming meant that groups or villages could no longer be nomadic. This is

where the importance of Nile river becomes evident. The soil near the Nile floodplain

remained fertile all year round and was thus prime real estate for agricultural practices.

Allen [36] argues that this would have drawn people towards the Nile thus increasing the

population density and social tension. Competition over fertile land would have existed

as groups jostled for territory. With Egypt thrown into further chaos, the social factors

would come to fruition.

It should be noted that the Nile Delta is likely to have slowed these processes for Northern

groups or villages. This is because the Nile Delta was more resilient to the effects of

desertification and consequently, the lack of environmental pressure meant that Northern

villages need not change their way of life.

3.3.3.2 Social Factors:

The turmoil caused by the Natural factors meant that Predynastic Egypt was open to

the exploits of opportunistic individuals. These individuals were likely to exhibit specific

behaviours and characteristics. As Flannery [140] mentions, these individuals were likely

authoritarians with an aggressive personality. These despots likely used the turmoil to

expand and secure their power. This is further supported by Allen’s [36] theory where the

Methodology 107

landlords (the despots) would have mobilized a military force to restrict movement out

of their kingdoms. It is through these despots and their need to control the economic,

military, political and religious systems that a power struggle, as described by Kemp

[139], emerges. It is also likely to have been a non-linear process with chiefdoms or

proto-states rising and collapsing over time until one kingdom was able to monopolize

both the material and knowledge sources of the region [8]. It is also worth noting that

the domination of the North by the South was likely a complex process that arose from

both conquest and cultural transmission. This process is likely to have occurred during

the end of the Predynastic period when the power centres of South had already been

established.

3.3.3.3 What should an ABM of Predynastic Egypt look like?

ABMs that seek to explain the emergence of the Ancient Egyptian state are few and far

between. This is most likely attributed to the delayed acceptance of agent-based mod-

elling in the field of Archaeology. Lehner [143] designed a conceptual model of Ancient

Egypt through the lens complex adaptive systems. The model is thorough with Lehner

describing everything from household, village, nome and state structure to the taxation of

landlords and the managing of land portfolios to account for the Nile flood waves. While

Lehner’s model is purely conceptual, it is insightful and can serve as inspiration for the

implementation of an ABM. Symons and Raine [144] do exactly this and take aspects of

Lehner’s model to investigate the spread of information and population aggregation in

an agrarian society. The model takes place on an abstracted Egyptian landscape. The

agents are households and are grouped into villages. They are capable of transmitting

information to other households and can migrate across the landscape. Villages claim

plots of land and put the households to work. If a household feels the need for a better

life, it can leave the village and move to another village it has knowledge of. While

Symons and Raine’s model is rather simple, it was capable of describing the benefits of

partial information in preventing overcrowding and the aggregation of households along

the Nile river. Nitschke et al. [145], influenced by Symons and Raine’s ABM, sought to

clarify some of the assumptions and characteristics in Kemp’s [139] conceptual model.

Similarly, agents were households on an abstracted Egyptian landscape and harvested

grain from fields. Uniquely, agents were given ambition and competency values that

were altered every [10,15] years to represent a change in management. The ambition and

Methodology 108

competency were used to determine whether households could increase their member-

ship, in the presence of surplus grain, and, in the case of competency, affect the yield of

a patch of land. The results of the ABM suggested that, regardless of the variation in

competency and/or ambition amongst households, a wealth disparity still emerges.

Taking into consideration the aforementioned related work and rest of the theory dis-

cussed in this section, we now attempt to identify the model functionality and agent

behaviour that is pivotal to modelling the complex social processes of state formation in

Predynastic Egypt. We will do this by blending the components of an ABM identified

in Section 2.1 and the ECS design pattern discussed in Section 3.1.

Environment: All related work implemented a spatially-explicit environment. This

makes sense given how the landscape of Egypt is heavily referenced in literature with

desertification and the presence of the Nile floodplain thought to have been key natural

factors that facilitated the formation of the state. However, related work abstracts these

concepts significantly and often focus on specific regions as opposed to Egypt as whole.

Symons and Raine [144], only use a 5km × 5km modelling area and completely forego

modelling both sides of the Nile as well as greatly abstracting Nile flood dynamics.

Nitschke et al. [145] follow a similar approach.

While the simplified approach is understandable, it is limiting in that modelling cultural

evolution across the entire Egyptian landscape is all but impossible. There is also some-

thing to be said by the simplicity in which farming yields are determined. A model that

considered using a larger landscape in combination with GIS data, a vegetation model

supplemented by archaeological data has great potential to recreate the dynamics of the

Ancient Egyptian landscape to a degree not currently possible by the state-of-the-art.

Entities and Agents: As noted by Lehner [143] the primary decision making unit is

the household. This term ’household’ is vague but typically represents a familial unit.

Lehner notes that the ’household’ may be abstracted further to represent all individuals

living under a single roof. This includes workers, slaves and extended family.

Collective representation of the households is also important. Across all the theories

reviewed, it is clear that the ability for an agent to subjugate, coerce and cooperate with

other agents is key. That is to say that in order to model the state formation of Predy-

nastic Egypt, the agents should be able to organize themselves within their collective.

Methodology 109

Allowing for the emergence of social stratification as well as various social organizational

configurations (egalitarian and authoritarian for example) should seriously be consid-

ered. What the ’collective’ actually represents is also interesting. Tribes, bands, villages,

settlements, proto-nomes and nomes are all terms used in the literature to describe col-

lectives at different stages in their development but, simply calling them villages [144]

or settlements [25] seems appropriate regardless of scale. Specific nomenclature such as

nome or tribe could be used if the modeller was interested in modelling the dynamics of

those collectives specifically. In the cases where the size and structure of a settlement are

variable, specific terms can be assigned to the collectives in a simulation posthumously

as a method of describing the emergence and evolution of said collectives.

Systems: We have identified five systems that we believe are fundamental to modelling

the formation of the Egyptian state. First, natural systems as noted in the environment

discussion such as increased desertification and Nile flood dynamics. These systems

should specifically make it increasingly difficult for inhabitants to live outside of the Nile

floodplain. Secondly, different resource types and methods of acquiring them should

be considered. Farmers relied on a completely different set of resources and acquisition

mechanisms when compared to hunter-gatherers. It has also been noted the social elite

used the quantity and variety of their resource coffers to differentiate themselves from

their subjects [8, 12]. Coupled with resource acquisition is the system of resource transfer.

This may refer to the transfer of resources between agents within a settlement, between

settlements or even with outside interests. The mechanisms by which this transfer occurs

should also be considered. It may be the case that an egalitarian society would use

resource pooling and equal distribution whereas a socially stratified society may have

elites employing commoners and taxing them.

Also, a population migration system is required. Allen [36] specifically states population

migration and control over the mobility of the population were key to the formation of

Ancient Egypt. Stevenson [8] notes that population migration northwards could have

been the result of Upper Egyptians wanting to secure better trade routes. Whether it

be due to the harshness of the land, high taxation rates, or the possibility of a better

future, household agents should be able to attempt to relocate.

Methodology 110

Lastly, processes of cultural differentiation and evolution should be considered. Predy-

nastic Egypt is full of dichotomies. Foraging and farming, authoritarianism and egali-

tarianism, the desolateness of the desert and the near unlimited potential of the Nile.

A model of Predynastic Egypt needs to facilitate these extremes and the various states

in-between. This should be done at the agent level whereby agents may differentiate

themselves in accordance with their personal experience and beliefs. The model should

allow for an egalitarian hunter-gatherer and a despotic agrarian landlord to exist within

the same simulation. The existence of these agent archetypes should be an emergent

phenomena. That is to say that while the agents may all start out as hunter-gatherers,

their lived experience should allow them to undergo cultural adaptation such that their

past beliefs are replaced by new ones more suited to the current state of their environ-

ment. This should be occurring at the household and settlement levels simultaneously.

Agents should also be able to convince other agents that their cultural beliefs are better

(either through objective success [36], coercion [12] or force [140]) such that, over time,

some cultural beliefs dominate others.

Using the above discussion, we categorize the list of minimally acceptable features needed

to implement an ABM of Predynastic Egypt as:

1. A spatially-explicit environment of Egypt. An exact recreation of the environment

is not necessary but, the modeller(s) should take specific steps to include Egypt’s

unique topography at the time whereby areas near the Nile were fertile and areas

outside the floodplain were becoming increasingly arid.

2. One agent in the model represents a single family household. Further abstractions

may be made to include slaves, workers or extended family as part of the ’household

unit’.

3. Households should be able to group themselves into collectives such as villages or

settlements.

4. Agents should be able to organize themselves in a social hierarchy. The complexity

of the hierarchy and metrics for determining how it forms may vary but, it should

at the very least facilitate the partitioning of the agents into social classes such

that both Egalitarian and Authoritarian organization schemes are possible.

Methodology 111

5. Household agents should have the ability to choose how they want to gather re-

sources. While there no limit to how many resource types or resource acquisition

methods can be added to the model, the agents must, at the very least, be able

to choose between abstract farming and foraging actions such that nomadic and

agrarian households can exist. A model may also allow the agents to change their

resource acquisition strategies over time.

6. Agents should be capable of sharing or trading resources among themselves. Agents

should exchange resources for other goods or services based on their standing in a

social hierarchy. For example, a social elite agent may allow a few commoner agents

to farm for them and take a cut of the resources farmed as tax. An egalitarian

collective may pool their resources together and distribute them equally.

7. Lastly, the agent population should be able to undergo cultural evolution such that

their resource trading beliefs, resource acquisition strategies and social hierarchies

may change over time in accordance with the cultural beliefs associated with the

most prosperous collectives and other processes such as cognitive innovation.

3.4 NeoCOOP - An ABM for Simulating Complex Social

Phenomena in Ancient Societies

In this section, we highlight the design and implementation of NeoCOOP (Neolithic Co-

operation Model), an ABM capable of simulating the Paleolithic-Neolithic transitionary

period that saw humanity move from largely egalitarian hunter gatherer groups to agrar-

ian super polities typically ruled by a social elite. Although NeoCOOP has already

been used to study the emergence of social stratification in Neolithic-inspired households

[41, 42], this section serves as the complete description of NeoCOOP and highlights how

it will be used to answer the research questions presented in the Thesis (See Section

1.2). The model was created using ECAgent (See Section 3.1), the adaptive-agent types

were designed using the information exchange process described in Section 3.2.3 and all

contextual design decisions such as the scale at which to model the agents come from

our review of Predynastic Egypt in Section 3.3.

Section 3.4.1 describes the environment of NeoCOOP, Section 3.4.2 details the design of

the various agent-types supported by NeoCOOP and Section 3.4.3 presents NeoCOOP ’s

Methodology 112

systems. For completeness, an ODD+D compliant description of NeoCOOP has been

included in Appendix A.1 and the source code is available at https://github.com/

BrandonGower-Winter/NeoCOOP.

3.4.1 Environment

In NeoCOOP, agents are placed onto a grid-world consisting of width×height cells. All

cells are considered square and uniform in size such that the area of any given cell is cell

dimension2 where cell dimension (meters) is a model input parameter.

Depending on the type of environment (simple or complex), a single cell comprises the

following properties:

1. position: A 2-tuple that stores the x and y-coordinates (integers) of the cell. This

property is immutable.

2. resources: The amount of resources (kg) at a given cell. This floating point value

is bound between 0 and the carrying capacity input parameter.

3. is settlement: An integer value that stores whether a settlement is located on the

cell. A value = −1 indicates that the cell is not occupied by a settlement. A value

≥ 0 indicates the id of the settlement occupying the cell.

4. is owned: An integer value that stores whether the cell is owned by a farming

household. A value = −1 indicates that the cell is not owned. A value ≥ 0 indicates

the id of the household that owns the cell.

5. height: A floating point value indicating the height (m) of the cell above sea level.

6. slope: A floating point value indicating the slope (◦) of the cell.

7. is water: A boolean value that stores whether the cell forms part of a body of

water.

8. soil moisture: A floating point value indicating the soil moisture (mm) of the

cell. This value is bound between 0 and the capacitance of the cell.

9. sand content: A floating point value indicating the sand content (%) of the cell.

This value is bound between 0 and 100.

https://github.com/BrandonGower-Winter/NeoCOOP
https://github.com/BrandonGower-Winter/NeoCOOP

Methodology 113

If the simple environment is used, cell properties 5-9 are excluded. The purpose of the

simple environment is to ensure that testing and iterating on the model is fast given that

the Vegetation Model (discussed later) comes at an additional computational cost which

can make testing and debugging the code difficult. Additionally, the simple environment

can be used to study the behaviour of the agents in toy-box environments which some

modellers may find useful.

At the beginning of a simulation run, the initial values of a given cell’s height, slope, is

water and sand content properties are based on the GIS data-maps that are fed to the

model as grayscale images (See Figure 3.17). The dimensions of the images are the same

as the environment such that one pixel corresponds to exactly one environment cell at

the same pixel coordinates. Calculating the value of the cell using the pixel value of the

respective image ∈ [0, 1] is done by linearly interpolating between min and max model

input properties. For example, the height of some arbitrary pixel is calculated as follows:

heightc = heightmin + IMGh,c(heightmax − heightmin) (3.13)

where heightc is the height of cell c. heightmin and heightmax are the minimum and

maximum possible height values respectively and IMGh,c is the pixel value ∈ [0, 1] of the

height image at cell c. This logic is also applied to the slope and sand content properties

using their respective minimum and maximum values. For is water, true is returned if

the pixel value of the water image is greater than 0.

Considerations were made to compress the data-maps into one or two images utilizing

separate colour channels to more efficiently store the data but, the idea was quickly

abandoned due to the added complexity it introduced when images needed to be quickly

modified. The inclusion of GIS data allows us to model the any topographical location

for which the required data maps (height, slope, is water and sand content) are available.

Figures 3.17 and 3.18 showcase how this is applied to the Predynastic Egyptian landscape

more clearly.

Methodology 114

(a) Heightmap (b) Slopemap

Figure 3.17: Example GIS data-maps.

(a) isWater (b) Sand Content

Figure 3.18: Example GIS data-maps (continued).

Methodology 115

3.4.2 Agent-Types

Given that we developed several types of agents with varying degrees of adaptive capacity,

we will first describe what they all have in common and then discuss their differences

in each each of their respective sections. NeoCOOP supports four agent types called:

Traditional, Rule-based Adaptive, Utility and Information Exchanging.

In NeoCOOP, the primary decision making agent the household. This primary motiva-

tion for this is that in Predynastic Egypt, and other ancient societies, a household was

typically ruled by a patriarchal figure who oversaw the management of the entire house-

hold [143]. Across all agent-types, a household h is defined by the following properties:

1. id: A household’s unique identifier. This value is an integer.

2. Resources: A float that stores the amount of resources (kg) the household has in

its personal storage.

3. Load: A float that stores the amount of resources (kg) a household has donated

to other households over a given period of time.

4. Storage History: A first-in-first-out list storing the history of agent resource

acquisitions. This property is not enabled by default and is only used when the

input parameter storage decay > 0.

5. Occupants: A list of occupant entities that are contained in the household agent.

6. Hunger: A float ∈ [0, 1] that describes how hungry the agent is. A value of 0.0

means the agent is starving and a value 1.0 means the agent is completely satiated.

7. Satisfaction: A float value ∈ [0, 1] representing the agent’s average hunger over

the past years per move iterations. Years per move is a user-defined property

discussed later.

8. Attachment (α): A float value ∈ [0, 1] that describes how ’attached’ an agent is

to its current settlement. If the value is > 0.5, the agent is less likely to move even

in the face of environmental stress. If the value is < 0.5, the agent is more likely

to move at the slightest indication of hardship.

Methodology 116

9. Peer Transfer: A float value ∈ [0, 1] that indicates how likely the agent is to

donate its resources to its peers. A value close to 1.0 indicates that the agent is

altruistic and will help its peers regardless of the circumstances. A value close to

0.0 indicates that the agent is selfish and is less likely to help its peers.

10. Subordinate Transfer: A float value ∈ [0, 1] that indicates how likely the agent

is to donate its resources to its subordinates. A value close to 1.0 indicates that the

agent is altruistic and will help its subordinates regardless of the circumstances.

A value close to 0.0 indicates that the agent is selfish and is less likely to help its

subordinates.

11. Authority Transfer: A float value ∈ [0, 1] that indicates how likely the agent is

to donate its resources to its authority agents. A value close to 1.0 indicates that

the agent is altruistic and will help its authorities regardless of the circumstances.

A value close to 0.0 indicates that the agent is selfish and is less likely to help its

authorities.

Additionally, the Traditional and Rule-based Adaptive agents are defined by an additional

property:

1. Farm Threshold: A float value ∈ [0, 1] that indicates how likely the agent is

to farm. A value close to 1.0 indicates that the agent will always choose to farm

whereas a value close to 0.0 indicates that the agent is more likely to forage.

The Utility agents are defined by the following additional properties:

1. Farm Utility: An unbounded float that represents the utility the agent associates

with the farm resource acquisition action.

2. Forage Utility: An unbounded float that represents the utility the agent asso-

ciates with the forage resource acquisition action.

3. Stubbornness (η): A float value ∈ [0, 1] that describes the degree to which an

agent will accept new information. A value close to 1.0 indicates that the agent is

naive and will accept new information regardless of its own opinions. A value close

to 0.0 indicates that the agent is stubborn and less likely to accept new information

Methodology 117

over its own opinions. From an implementation perspective, stubbornness is the

learning rate of the agent for all Reinforcement Learning processes.

Lastly, the Information Exchanging agents extend the Utility agent’s definition to include

the following additional property:

1. Conformity (σ): A float value ∈ [0, 1] that describes the degree to which an agent

will accept new information from its neighbours. This property is functionally

identical to stubbornness but, it is associated with the Evolutionary Algorithm

processes which involve collective learning as opposed to individual learning.

A household contains one or more occupants. They are not decision making entities

and are purely used to track the population and resource acquisition capabilities of a

household. Occupants are two-tuples defined by a unique identifier and their age (both

integers). Optionally, NeoCOOP allows a modeller to separate households into two sub-

populations: able workers and unable occupants. By specifying two input parameters age

of maturity and age of senility, a household’s able workers can be determined as follows:

able_workers = {o | o ∈ h and age_of_maturity < o.age < age_of_senility} (3.14)

Where o is a occupant and h is a household agent. The set of able workers is used to

determine how many cells the households can forage or farm (discussed in more detail

later).

Unlike most ABMs that facilitate agent-to-agent cooperation, NeoCOOP allows agents

to make decisions based on their social status and the social status of the agents they are

interacting with. In NeoCOOP, social status is defined as the sum of an agent’s available

resources and its load. To facilitate social stratification, we use the self-organization

scheme described by Chliaoutakis and Chalkiadakis [25] whereby a relationship type can

be determined for every agent pair by comparing their social statuses. We define each of

the relationship types as follows:

is_acq(h1, h2) = h1.settlement == h2.settlement (3.15)

Methodology 118

is_peer(h1, h2) =
|h2.status− h1.status|

max(h1.status, h2.status)
< L (3.16)

is_auth(h1, h2) =
(h2.status− h1.status)
max(h1.status, h2.status)

> L (3.17)

is_sub(h1, h2) = is_auth(h2, h1) (3.18)

Where is_acq, is_peer, is_auth, is_sub describe whether household h2 has an ac-

quaintance, peer, authority or subordinate relationship with household h1 respectively.

hn.status is a household’s social status. L is the load difference ∈ [0, 1] input parame-

ter which describes how much more social status an agent requires to be considered an

authority over another agent. Note that in order for a peer, authority or subordinate

relationship to be formed, the two households must be from the same settlement (i.e.

is_acq = true).

3.4.2.1 Traditional Agents

The traditional agent-type is simplest of all the agents developed in this work as they

are meant to represent early rule-based agents found in other model’s such as Epstein’s

Sugarscape [46] and Axelrod’s cultural dissemination model [146]. More specifically,

traditional agent’s are built using the threshold design illustrated in Chapter 2 (See

Algorithm 1).

In NeoCOOP, agent’s are responsible for making three types of decisions classified as

Resource Acquisition, Resource Transfer and Migration. The systems that use these

decisions are defined in Sections 3.4.3.4, 3.4.3.5 and 3.4.3.7 respectively but how each de-

cision is made differs depending on agent-type. Unless specifically stated, agents default

to the forthcoming decision making strategies. From a software design perspective, one

can view the traditional agent-type as a base class and other agent-types simply overload

the traditional agent’s behaviour.

Resource Acquisition: The first decision an agent makes each iteration is how it

will acquire resources. In NeoCOOP, agents can either FARM or FORAGE. As noted

in Section 3.3, these two actions represent high-level abstractions of the two primary

methods of resource acquisition during the Predynastic period. On the one hand, foraging

represents actions such as gathering, hunting and fishing while farming represents both

Methodology 119

Algorithm 5: Pseudocode for Traditional Agent’s resource acquisition decision mak-
ing system.

1 def get_num_to_farm(farm_threshold : float, num_choices : int):
2 num_to_farm = 0
3 forall i in range(num_choices) do
4 if rand() < farm_threshold then
5 num_to_farm += 1
6 end
7 return num_to_farm

crop cultivation and animal husbandry. The actual mechanisms that govern how these

actions work are discussed in Section 3.4.3.4 but, farming is designed to provide more

resources at the cost of immobility while foraging offers the inverse (less resources and

greater mobility).

As shown in Algorithm 5, traditional agents make their decisions by sampling a random

value ∈ [0.0, 1.0] from a uniform distribution. If that value is less than its farm_threshold,

they will choose to farm. This process is repeated for the number of times the agent needs

to make that decision. For example, if the agent needs to make three choices, one result

might see the agent choosing to FARM twice and FORAGE once. The key property to

determine the likelihood of choosing the FARM action is the agent’s farm_threshold.

For the traditional agents, the farm_threshold for a household is determined using Equa-

tion 3.19.

farm_threshold =
forage_grad ∗ t+ forage_offset

forage_duration
+ rand(−margin,margin)

(3.19)

where t is the simulation timestep, forage_grad, forage_offset and forage_duration

are user-defined parameters that describe the rate at which the agents adopt farming.

Lastly, margin is a user-defined float ∈ [0.0, 1.0] that is used to introduce agent hetero-

geneity as agents will adopt farming asynchronously.

This decision making process is clearly simple but, it is still quite versatile. It does

assume that farming must be adopted and that this process is linear but, one can view

Equation 3.19 as a line of best fit with the margin property representing the error bars.

These values could be directly derived from the archaeological data should it exist.

Methodology 120

Algorithm 6: Pseudocode for Agent’s resource transfer decision making system.
Note: This pseudocode assumes that both the recipient and donor are acquaintances.

1 def request_resources(recipient : Household, donor : Household, resources_required
: float):

2 if is_Auth(donor, recipient) then
3 if rand() <= donor.sub_transfer then
4 return grant_resources(donor, resources_required)
5 else if is_Peer(donor, recipient) then
6 else if rand() <= donor.peer_transfer then
7 return grant_resources(donor, resources_required)
8 else if rand() <= donor.auth_transfer then
9 return grant_resources(donor, resources_required)

10 return 0.0

Resource Transfer: As demonstrated in Algorithm 6, the agents’ resource transfer de-

cision making system is based on the two interacting agent’s relationship to each other.

When a donor agent receives a request, it will determine its relationship type to the po-

tential recipient and generate a random value ∈ [0.0, 1.0]. If that random value is less than

or equal to the donor agent’s respective transfer property (sub_transfer, peer_transfer

and auth_transfer for Authority, Peer and Subordinate relationships respectively), the

request will be granted.

Migration: For population migration, the agent’s follow Equation 3.20.

move(h) = 2αh ∗ satisfaction(h) < random() (3.20)

where h is the household agent, alpha is the attachment of household h and satisfaction(h) ∈

[0.0, 1.0] (discussed more in Section 3.4.3.6) is a measure of the degree to which the agents

resource needs have been met. As noted earlier, attachment is a float value ∈ [0, 1] that

describes how ’attached’ an agent is to its current settlement. We multiply the attach-

ment value by 2.0 such that if a household has an attachment value > 0.5, it is willing

to endure some degree of resource hardship before deciding to move. An agent with

an attachment value < 0.5 exhibits inverse behaviour, more likely to flee or migrate at

even the slightest sign of hardship. From a design perspective, satisfaction represents the

agent’s objective circumstances while attachment represents its subjective or emotional

status with regards to its current location.

Methodology 121

3.4.2.2 Rule-Based Adaptive Agents

Given the simplicity of the traditional agents and that their design philosophy arises

from pre-2000s ABMs, we were motivated to create a rule-based agent that more closely

represents what you would find at the time of writing this thesis. In this work, we

call this agent-type the rule-based adaptive (rb-adaptive) agent. Its design is inspired

by Hailegiorgis et al. [147]’s OMOLAND-CA model which uses protective motivation

theory [148] (PMT) to introduce subjective adaptive-capacity to their agents.

The rb-adaptive agents are almost identical to the traditional agents except that their

farm_threshold and household properties (attachment, peer, subordinate and authority

transfer specifically) may change over time.

The method for updating a household’s farm threshold is defined by four separate steps.

The first step is prediction. At every iteration, rb-adaptive agents will predict the severity

of the current living conditions. In the OMOLAND_CA model, this is done by looking at

rainfall onset values. In NeoCOOP we just use the agent’s hunger as it is clear indicator

of the severity of the agent’s living circumstances (See Equation 3.21).

severity(h) = 1.0− h.hunger (3.21)

Where h is the agent household. The next step is risk assessment. At this step, agents

will use the severity value and Equation 3.22 to calculate the risk associated with its

current circumstances.

risk_appraisal(h) = 0.6 ∗ severity(h) + 0.4 ∗ rand() (3.22)

Using their assessed risk, the agents then calculate their adaptation intention using

Equation 3.25 which will asses the agent’s capability to adapt at a given timestep.

r(h) = risk_appraisal(h) ∗ risk_elasticity (3.23)

p(h) = adaptation_appraisal(h) ∗ (1− cognitive_bias) (3.24)

adapt_intention(h) = r(h)− p(h) (3.25)

Methodology 122

Where adaptation_appraisal(h) is the agent’s ability to adapt which is discussed more

in Section 3.4.3.9. risk_elasticity and cognitive_bias are user configurable parameters.

Lastly, the agent will perform a learning step that updates their farm_threshold, attach-

ment and resource transfer properties if their adapt_intention(h) > adapt_threshold

where adapt_threshold is another user configurable parameter. The update to the

agent’s properties are done using Equation 3.26.

G(p)h,t+1 = G(p)h,t + γ ∗ (
1

|S′|
∑
h′∈S′

G(p)h′,t −G(p)h,t) (3.26)

Where, p is the agent property (farm_threshold is one of these properties), t is the

timestep, G is a function that gets or sets property p for household h, γ is the learning

rate configurable parameter and S′ is the set of all households that share a settlement

with household h and will adapt at timestep t.

Given the complexity of the rb-adaptive agent, it will undoubtedly exhibit greater adap-

tive capacity than the traditional agent-type. The caveat is that rb-adaptive agents

consist of significantly more tunable parameters. A lot of these properties can simply

be derived from data but, that data may not be available and thus will need to derived

using other means.

3.4.2.3 Utility Agents

The third type of agent is called the Utility agent. It is the first agent-type to use ML

as an adaptive-mechanism. The central concept that underpins the design of the utility

agent is Utility theory. More specifically, utility agents seek to maximize utility such

that they are constantly taking actions that result in the greatest rewards. Inspired by

Chliaoutakis and Chalkiadakis [25], utility agents use RL to discover whether foraging

or farming is better.

As shown in Algorithm 7, Each utility agent has two local properties called forage_utlity

and farm_utlity which indicate the utility said agent associates with each action re-

spectively. These utility values are state-agnostic meaning that their utility values are

not directly associated with where the agent is located in the environment. This is

a limitation but, the alternative solution where agents maintain both a general utility

Methodology 123

Algorithm 7: Pseudocode for Utility Agent’s resource acquisition decision making
system.

1 def get_num_to_farm(h : Household, num_choices : int):
2 num_to_farm = 0
3 forall i in range(num_choices) do
4 if rand() > h.satisfaction then
5 num_to_farm += 1 if rand() < 0.5 else 0
6 else
7 num_to_farm += 1 if h.farm_utility > h.forage_utility else 0
8 end
9 return num_to_farm

value for each action and utility values for each cell in the environment was considered

out of scope as it would make comparing behaviour produced by utility agents and the

traditional agents quite difficult16.

For each choice, a random value ∈ [0.0, 1.0] is generated and compared to the agent’s

satisfaction. If the generated value is greater, the agent will randomly decide to FORAGE

or FARM. If the generated value is less than the satisfaction, the agent will take the action

that it perceives as having the maximum utility. In the context of RL, Algorithm 7 is

the exploration-exploitation heuristic used by the agents. If the agents are satisfied, they

are less like to take exploratory actions. Alternatively, if the agents are less satisfied,

they are more likely to take exploratory actions in the hopes of finding a better strategy

than they currently have. It is also worth noting that utility agents do not guarantee

that farming will emerge as the dominant strategy. It also allows farming to emerge in

several ways. For example, a sudden drop in the yield produced by foraging would result

is low satisfaction across the board and mass action space exploration which may result

in the rapid adoption of farming. Alternatively, if satisfaction remains relatively high

throughout a simulation run, there would be fewer exploratory actions which may result

is slower adoption of farming if at all.

When the utility agents update their utility values, they use Equation 3.27.

Uh,t+1(a) = Uh,t(a) + ηh(Rh,t(a)− Uh,t(a)) (3.27)
16More specifically, the utility and traditional agents are meant to represent the simplest implemen-

tations of the two different design paradigms being compared in this thesis (ML and rule-based agents).

Methodology 124

where Uh,t(a) is the utility value household h associates with action a (FORAGE or

FARM) at timestep t. ηh is the stubbornness of the agent and Rh,t(a) is the reward the

agent received for performing the action a at timestep a.

3.4.2.4 Information Exchanging Agents

The final agent-type is the Information Exchange agent (IE -agent). As its name sug-

gests, the agent is constructed using the IE process described in Section 3.2.2. One of the

main limitations of the utility agent is that it cannot share its beliefs with other house-

holds. This means that other household agents cannot learn from successful agents. As

shown in Figure 3.19, IE agents explicitly deal with this issue by adding communicative

functions that facilitate both biological (households to offspring household exchange) and

cultural (households to settlement, settlement to settlement and settlement to households

exchange) adaptation. These communicative functions take the form of two Evolution-

ary Algorithms (EAs): A Genetic Algorithm [149] (GA) and a Cultural Algorithm [96]

(CA).

Using the resource acquisition strategy described in Algorithm 7 and the two EAs, the

IE agents are not only capable of learning from their environment, but they are also

capable of exchanging what they’ve learned with other households. Given that EAs are

fitness-based algorithms, we determine the fitness of a household agent h using Equation

3.28.

f(h) = h.status (3.28)

Where, as noted earlier, social status is the sum of the agent’s resources and its load. With

this fitness function, we do not bias any particular type of resource sharing behaviour.

For example, if the fitness function did not take the agent’s generosity into account,

then selfish behaviour would be unfairly promoted. Additionally, if the agent has enough

resources such that it can fulfill donation requests, it is arguably as fit as an individual

with the same amount of resources who rejects all donation requests17.
17This assumes that altruistic and selfish behavior are equal. Under different environmental conditions

that may not be the case but, by design, agents can evolve towards the most situationally fit solution.

Methodology 125

Figure 3.19: An information exchange perspective of the agent-types at some ar-
bitrary timestep. Note: All settlement entities in the Information Exchange agent
network should be linked. The diagonal connections were omitted for visual clarity.

Methodology 126

Both the GA and CA utilize the IE agent’s genotype which consists of the following

genes (agent properties): Farm Utility, Forage Utility, Stubbornness, Conformity, Peer

Transfer, Subordinate Transfer and Authority Transfer and Attachment. The algorithms

also make use of a concept called influence. Influence is used to determine best perform-

ing settlements and describes the probability that two settlements will interact with each

other. This is done using XTENT [40] (Equation 3.29):

I(s1, s2) = (s2.status)
β −mD(s1, s2) (3.29)

Where, s1 and s2 are settlements, I(s1, s2) is the influence of s2 on s1, s2.status is the

social status of s2 (the sum total social status of all agents in s2), D(s1, s1) is distance

from s1 to s2. β and m are coefficients describing the required social status of one

settlement to influence another.

Calculating the influence of every settlement on a given settlement, gives a probability

distribution (Equation 3.30).

P (s1, s2) =
I(s1, s2)∑
k∈K I(s1, sk)

(3.30)

Where P (s1, s2) is the probability of settlement s2 influencing settlement s1 and K is

the set of neighbouring settlements that have a positive influence value I(s1, sk) on s1.

Genetic Algorithm: The GA executes whenever the split_household function is called

(Algorithm 15). The child agent produced is a combination of two parents with the

first parent being the household that called the split_household function and the second

parent determined by roulette wheel selection. This selection uses the social status of

other agents within the same settlement of the first parent and from other settlements

that have enough influence (I(s1, s2) > 0). The offspring agent is produced using Uniform

crossover and Random mutation. The only exception to this is are the Farm and Forage

Utility values which use Gaussian mutation.

Cultural Algorithm: The CA uses Knowledge Sources [102] to diversify how agents

are influenced. These are:

Methodology 127

• Normative: Influence on agent genes from its settlement.

• Spatial: Influence on agent genes from another settlement.

• Domain: Equivalent to GA mutation function, where domain influence mutates

one of the agent’s genes (See Section 3.4.3.8).

Every influence_frequency iterations, agents are influenced in accordance with the influ-

ence_rate. If an agent is selected for influencing, a roulette wheel is spun to determine

from which knowledge source influence will come from. Influence from the Domain knowl-

edge source occurs at a rate defined by the mutation_rate parameter. Influence from

the Normative and Spatial knowledge sources occur with varying probability defined by

equations 3.31 and 3.32.

N(sh, si) = max(
sh.status

si.status
, 1.0) (3.31)

S(sh, si) = 1.0−N(sh, si) (3.32)

Where, N and S are the probability of choosing the Normative and Spatial knowledge

sources respectively, sh is the settlement of the agent being influenced, si is the settlement

that would influence agent h. If the spatial knowledge source is selected. si is determined

by performing roulette wheel selection on all neighbouring settlements with a positive

influence on settlement sh. Roulette wheel weights are determined by the values returned

by Equation 3.30.

Each settlement’s beliefs are represented by Belief Spaces Bs. Belief Spaces have the

same structure as the agent genotype with each property calculated using a weighted

average of the corresponding property of all agents within that settlement. The weight

an agent contributes to the belief space is determined using its social status relative to

the social status of the other agents in the same settlement. If an agent is influenced

by the normative knowledge source, the belief space that influences it is the belief space

of the settlement the agent belongs to Bsh . If the agent is influenced by the spatial

knowledge source, the belief space that will influence the agent is the belief space of the

Methodology 128

settlement selected during roulette wheel selection (Bsi). Agent properties are influenced

as follows (Equation 3.33):

Gh,t+1(p) = Gh,t(p) + σh(Bs,t(p)−Gh,t(p)) ∗ Φ(h,Bs,t) (3.33)

Where, p is the agent gene property, t is the timestep, G is the agent’s genotype, σh

is the conformity of the agent, B is the selected belief space (Bsh or Bsi) and Φ is the

Homophily term which returns a value ∈ [0, 1] describing how similar the agent’s genes

are to the belief space that is influencing it. Homophily is a sociological principle that

describes the tendency for individuals that are similar, either biologically or culturally,

to gather together. The value of Phi is 1.0 for interacting entities that have exactly

the same genes, and close to 0.0 for entities whose gene values are further apart. This

approach is similar to interaction probability in Axelrod’s cultural dissemination model

[146]. In the model, Φ limits the degree to which an agent is influenced if the belief

space influencing it contains drastically different gene values. Formally, Φ is one minus

the average absolute difference between the agent and influencing belief space’s genes

(Equation 3.34).

Φ(h, b) = 1.0− 1

|Gh,t|
∑
p∈Gh,t

|h.p− b.p| (3.34)

When comparing the four agent-types introduced, the IE agent is most similar to the

rb-adaptive agent in terms of potential adaptive capacity but with far fewer configurable

parameters. This, in theory 18, should make them easier to parameter tune.

The four agent-types discussed include both simple and complex implementations of

the two design paradigms (ML and rule-based) that we are interested in studying. By

exposing these agents to a sufficiently complex and adverse environment, we should attain

a more-complete understanding of the benefits, if any, the ML agents (utility and IE)

have over the rule-based (traditional and rb-adaptive) agents in terms of their adaptive

capacity.
18This assumes that the algorithms are less sensitive to variations in input-space. Early exploration

with different agent designs showed that some complex systems were noticeably more resistant to vari-
ations in their input space despite have several additional parameters that could affect them.

Methodology 129

Algorithm 8: Pseudocode for the Global Environment System.
1 def global_environment_system():
2 min_rainfall, max_rainfall = interpolator(start_rainfall, end_rainfall,

rain_params)
3 min_temperature, max_temperature = interpolator(start_temperature,

end_temperature, temperature_params)
4 min_flood, max_flood = interpolator(start_flood, end_flood, flood_params)
5 rainfall = rand(min_rainfall, max_rainfall)
6 temperature = rand(min_temperature, max_temperature)
7 flood = rand(min_flood, max_flood)
8 return rainfall, temperature, solar, flood

3.4.3 NeoCOOP Systems

In this section we will discuss the implementation and execution of NeoCOOP ’s systems.

Figure 3.20 depicts the list and execution cycle of the model and Sections 3.4.3.1 - 3.4.3.9

discuss each of the systems listed in detail.

Figure 3.20: A figure depicting the execution order of NeoCOOP ’s systems. The
number that prefixes the system’s name indicates its position in the execution queue.
The Information Exchange System and Rule-based Adaptation systems are present when
the type of agent being investigated are the IE and rb-adaptive agents respectively.

3.4.3.1 Global Environment System

NeoCOOP utilizes a Vegetation Model. Adapted from Xu et al. [150], the Vegetation

Model comprises three systems which act sequentially to calculate an estimate of the

total growth penalties of each environmental cell using the Carnegie-Ames-Stanford-

Approach (CASA) approach. The first of these components is the Global Environment

System (See Algorithm 8). As its name suggests, it is responsible for generating values

Methodology 130

Algorithm 9: Pseudocode for the Soil Moisture System.
1 def soil_moisture_system():
2 PET = thornthwaite(temperature)
3 forall cell : Cell in environment do
4 if cell.is_water then
5 continue
6 else if is_flooded(cell) then
7 cell.moisture = wfc(cell.sand_content)
8 else
9 if PET > rainfall_buffer[i] then

10 rdr = RDR(cell.moisture + rainfall, cell.sand_content,
cell.clay_content)

11 cell.moisture = max(0.0, cell.moisture - (PET - rainfall) * rdr
12 else
13 wfc = WFC(cell.sand_content, cell.clay_content)
14 cell.moisture = min(cell.moisture + (rainfall - PET), wfc)
15 end
16 return

for the global environment properties every iteration. These three properties are rainfall

(mm), temperature (◦C) and Nile flood height (m). The exact method for generating

these values is discussed in Chapter 4 but every iteration, the Global Environment System

will generate yearly average rainfall, temperature and flood height values. The system

does not do much by itself but the values it generates are used several of the systems yet

to be described.

3.4.3.2 Soil Moisture System

The Soil Moisture System (See Algorithm 9) is the second Vegetation Model system and

it is responsible for updating the amount of soil moisture at a given cell. Every iteration,

the Soil Moisture System will iterate over every cell in the environment. The potential

evaporation (PET) is calculated using the Thornthwaite equation [151] and compared

to the rainfall value generated by the Global Environment System. If PET is greater,

the soil moisture of a cell is reduced by calculating the difference in PET and rainfall

multiplied by the relative dry ratio (RDR) [152] defined by Equation 3.35:

RDR(m, csand, cclay) =
1 +A(csand, cclay)

1 +A(csand, cclay) ∗mB(csand,cclay)
(3.35)

Methodology 131

where m is soil moisture, csand is the sand content (%), cclay is the clay content (%)

and A and B (See Equations 3.36 and 3.37) are curves that describe the texture related

drying functions [153]:

A(csand, cclay) = exp(−4.396−0.0715∗cclay−0.000488∗(csand)2−0.00004258∗(csand)2∗cclay)∗100.0

(3.36)

B(csand, cclay) = −3.140− 0.00222 ∗ (cclay ∗ ∗2)− 0.00003484 ∗ (csand)
2 ∗ cclay (3.37)

If the monthly rainfall is greater than the PET, their difference is added to the cell’s

stored moisture. This value is capped at the soil’s saturated water content value (wfc)

which is calculated using a Equation 3.38 [153].

WFC(csand, cclay) = 0.332− 7.251× 10−4(csand) + 0.1276log10(cclay) (3.38)

Lastly, if the cell is a water cell, this entire process is skipped. If the cell is flooded, the soil

moisture is just set to its maximum value (wfc) for the iteration. The motivation for this

decision is that if the cell is flooded, it would provide sufficient resources and nutrients

to the plants growing there for that iteration. It is admittedly a simplistic approach but,

more complex flood dynamics were considered out-of-scope for this project due to the

intense workload required to add such a feature, and the minimal return it would provide

to an already complex model. The exact method for determining if a cell is flooded is

included in Appendix C.3.

3.4.3.3 Vegetation Growth System

The last process of the Vegetation Model is the Vegetation Growth System (See Algo-

rithm 10). In a standard Vegetation Model, net primary productivity (NPP) is defined

as the amount of photosynthetically available radiation multiplied by the growth inhibit-

ing environmental factors (water and temperature specifically) represented as a penalty

score ∈ [0, 1]. We do not actually calculate NPP in this work, instead we only calculate

Methodology 132

Algorithm 10: Pseudocode for the Vegetation Growth System.
1 def vegetation_growth_system():
2 forall cell : Cell in environment do
3 penalty = Equation 3.39
4 penalty *= Equation 3.40
5 penalty *= Equation 3.41
6 penalty *= cell.slope
7 cell.resources = penalty
8 end
9 return

the penalty factor and derive available resources from that value. The motivations for

this decision are twofold. First, converting NPP into a unit that makes sense to consume

(kg for example) is not straightforward and requires data for several additional input

parameters that are plant species specific (which doesn’t integrate nicely with our gener-

alized ’resources’). Given the abundance of sunlight in Egypt [12], one could reasonably

argue that the greatest factors affecting the amount of resources available are the penalty

factors. Thus, we just assume that their is sufficient solar radiation and use the penalty

factor to indicate the quantity of resources available. The second reason for this decision

is simplicity. Given that the penalty factor is a value ∈ [0, 1], it is easy to determine if

the environment produced sufficient resources. A value close to 1.0 indicates near perfect

living conditions while a value close to 0.0 indicates unlivable conditions.

Every iteration, the Vegetation Growth System calculate the growth inhibiting penalties

for each environment cell. The first of these penalties is the water penalty [152] (Equation

3.39)

W (cmoisture) = min(0.5 + 0.5× cmoisture, 1.0) (3.39)

where W is the water penalty and cmoisture is the soil moisture of the environment cell.

The temperature penalty takes the form of two penalty functions (Equations 3.40 and

3.40).

T1(x) = 0.8 + 0.02× xopt − 0.0005× (xopt)
2 (3.40)

T2(x) =
1.1814

(1 + exp(0.2× (xopt − 10− x)))/(1 + exp(0.3× (−xopt − 10 + x)))
(3.41)

Methodology 133

Where x is the average monthly temperature, xopt is average monthly temperature where

the normalized vegetation density index (NVDI) is maximized. Field et al. [154] explain

these equations in detail but, in short, Equation 3.40 describes temperature penalties

for environments with extreme (hot and cold) average temperatures (close to 0◦C or

40◦C) and Equation 3.41 describes growth penalties for environments with large seasonal

temperature swings. The next penalty type is the slope penalty which just queries the

cell’s slope which is a value taken directly form the slopemap depicted in Figure 3.17.

Once the growth penalties have been calculated, their values are stored in the environ-

ments resources cells (See Algorithm 10, line 7).

3.4.3.4 Resource Acquisition System

The Resource Acquisition System (See Algorithm 11) is responsible for managing the

agent’s FARM and FORAGE actions. Every iteration, the Resource Acquisition System

will iterate over every household and determine how many times they want to farm

by calling get_num_to_farm (Algorithm 5 for traditional and rb-adaptive agents and

Algorithm 7 for utility and IE agents).

If a household would farm and it does not own any land, it will try to claim some by

looking for any unoccupied environmental cells neighbouring its settlements. The exact

amount is determined by how many cells the agent wants to farm at a given iteration.

For every FARM action, an agent will randomly select one of its cells to farm at.

This process is repeated for every FORAGE action except that the agent will look for

cells that contain the most resources in its vicinity and take resources directly from them.

After all actions have been taken, the agent will add its newly acquired resources to its

resource coffers. Lastly, if the agent is a Utility or IE agent, its utility values will be

updated in accordance with Equation 3.2719.

The amount of resources returned by these actions are determined by multiplying the

amount of resources available at the cell (the penalty factor discussed in Section 3.4.3.3)

multiplied by the forage production rate and farm production rate input parameters for

FORAGE and FARM actions respectively.
19The reward R for each action is the average of the total resources returned by said action. This

ensures that agent do not overvalue an action just because they executed more than the other.

Methodology 134

Algorithm 11: Pseudocode for the Resource Acquisition System.
1 def resource_acquisition_system():
2 forall h : Household in Households do
3 num_choices = ceil(h.able_workers() / farms_per_patch)
4 num_to_farm = get_num_to_farm(h, num_choices)
5 total_farm = 0.0
6 total_forage = 0.0
7 # Check if household needs farmland
8 if len(h.owned_land) < num_to_farm then
9 acquire_farmland(h, num_to_farm)

10 owned_land = [x for x in h.owned_land]
11 for i in range(num_to_farm) do
12 to_farm = random_select(owned_land)
13 owned_land.remove(to_farm)
14 total_farm += farm(to_farm)
15 end
16 # In practice, this is only done if the agent is going forage because
17 # it is computationally expensive.
18 candidates = get_all_near_vegetation_cells(h)
19 sort(candidates)
20 for i in range(num_choices - num_to_farm) do
21 total_forage += forage(candidates.pop())
22 end
23 h.resources += total_farm + total_forage
24 # Update Utility Values
25 if type(h) == Utility or type(h) == IEAgent then
26 total_forage = total_forage / (num_choices - num_to_farm)
27 total_farm = total_farm / num_to_farm
28 # See Equation 3.27
29 h.forage_utility += h.stubbornness * (total_forage - h.forage_utility)
30 h.farm_utility += h.stubbornness * (total_farm - h.farm_utility)
31 end
32 return

3.4.3.5 Resource Transfer System

Once resource acquisition is complete, agents determine if they have enough resources

to satisfy their needs for the iteration (See Algorithm 12). This is done by the Resource

Transfer System. If an agent does not have enough resources, the agent asks its authority

agents if they would be willing to give some of their excess resources to it as a donation.

For each authority asked, a random value ∈ [0, 1] is generated and compared to the

authority agent’s subordinate_transfer property. If the generated value is less than the

subordinate_transfer property, the authority agent is willing to grant donations for that

iteration. Whenever a donation is granted, the authority agent has its load property

Methodology 135

Algorithm 12: Pseudocode for the Resource Transfer System.
1 def transfer_resources(recipient : Household, donor : Household,

resources_required : float):
2 resources_granted = request_resources(recipient, donor, resources_required)
3 recipient.resources += resources_granted
4 donor.load += resources_granted
5 return resources_granted
6 def ask_for_resources(h : Household, required_resources : float):
7 forall auth : Household in get_authorities(h) do
8 required_resources -= transfer_resources(h, auth, resources_required)
9 if required_resources == 0 then

10 return
11 end
12 forall peer : Household in get_peers(h) do
13 required_resources -= transfer_resources(h, peer, resources_required)
14 if required_resources == 0 then
15 return
16 end
17 forall sub : Household in get_subordinates(h) do
18 required_resources -= transfer_resources(h, sub, resources_required)
19 if required_resources == 0 then
20 return
21 end
22 return
23 def resource_transfer_system():
24 forall h : Household in Households do
25 surplus = h.resources - h.required_resources()
26 if surplus < 0 then
27 ask_for_resources(h, surplus)
28 end
29 return

increased by the resources donated. If an agent has asked all of its authority agents for

resources and it will still go hungry, it then repeats this process for its peer relationships

with the donating agent using its peer_transfer property to determine if the donation

succeeds. If that is still not sufficient, the agent will then ask all of its subordinates for

resources.

One limitation we identified with equivalent models when developing NeoCOOP per-

tains to their tendency to assume that resource sharing beliefs were uniform regardless

of the two interacting agents. Inspired by Chliaoutakis and Chalkiadakis [25]’s dynamic

organizational schemes, the peer_transfer, subordinate_transfer and authority_transfer

properties allow us to simulate different agent-types that exhibit varying degrees of al-

truistic and selfish behaviour. For example, one might envision a truly altruistic agent

Methodology 136

Algorithm 13: Pseudocode for Resource Consumption System.
1 def required_resources(h : Household):
2 res_req = 0.0
3 forall o : Occupant in h do
4 if o.age >= age_of_maturity then
5 res_req += consumption_rate
6 else
7 res_req += child_factor * consumption_rate
8 end
9 return res_req

10 def resource_consumption_system():
11 forall h : Household in Households do
12 h.hunger = min(h.resources / required_resources(h), 1.0)
13 h.resources -= max(0.0, h.resources - required_resources(h))
14 h.satisfaction_buffer.append(hunger) # Used to calculate satisfaction later
15 end
16 return

to be willing to share its excess resources regardless of their relationship with the donee

(i.e. the agent has peer, subordinate and authority transfer values close to 1.0) whereas

a nepotistic agent may be willing to share excess resources with its peers and authorities

but not its subordinates (i.e. the agent has peer and authority transfer values close to

1.0 but a subordinate transfer close to 0.0).

3.4.3.6 Resource Consumption System

The Resource Consumption System (See Algorithm 13) is arguably NeoCOOP ’s simplest

system. Simply put, the system will loop over every agent in the environment, consume

the agent’s resources and calculate their hunger. The agent’s hunger is determined by

calculating the ratio of resources the agent compared to how much it needs to consume

(known as required resources). The value of required resources is determined by calculat-

ing the resource needs of the household. An optional parameter, called child_factor, can

be used to decrease the resource requirement needs of occupants who have not reached

the age_of_maturity. Once the household’s hunger has been calculated, the agents will

take the resources from their resource pool. Hunger and resources are capped at 1.0 and

0.0 because one cannot be more than 100% full and have less than 0 resources respec-

tively. We also store the agent’s hunger in a buffer which will be used to calculate its

satisfaction in Algorithm 14.

Methodology 137

Algorithm 14: Pseudocode for the Population Management System.
1 def population_management_system():
2 forall h : Household in Households do
3 # Reallocation Check
4 if timestep != 0 and mod(timestep + 1, yrs_per_move) == 0 then
5 h.satisfaction = avg(h.satisfaction_buffer)
6 h.satisfaction_buffer.empty()
7 if move(h) then
8 relocate_household(h)
9 # Population Growth

10 for i in range(h.able_workers() do
11 if random() < birth_rate then
12 h.add_occupant()
13 end
14 toRemove = []
15 # Population Loss
16 for i in range(h.occupants.size() do
17 if random() * hunger < death_rate then
18 toRemove.append(h.occupants[i])
19 else
20 h.occupants[i].age += 1
21 end
22 # Remove Dead Occupants
23 forall o : Occupant in toRemove do
24 h.occupants.remove(o)
25 end
26 if h.occupants.size() > carrying_capacity then
27 split_household(h)
28 if h.able_workers() == 0 then
29 remove_household(h)
30 end
31 return

3.4.3.7 Population Management System

The Population Management System (See Algorithm 14) is responsible for managing

the population growth, loss and migration. For population growth, the system will loop

over every household in the environment and, for every occupant in said household,

generate a random number. If that number is less than the birth_rate input parameter,

a new occupant will be created and added to the household. For population loss, the

same process occurs but the random number is multiplied by the agent’s hunger and

compared to the death_rate input parameter. If the calculated value is less than the

death_rate, the occupant is removed from the household (dies). If the occupant is not

Methodology 138

removed from the household due to this process, it ages up by 1. If a household reaches

0 able_workers, it will be considered abandoned and be removed from the simulation.

One point of interest with regards to this process is the fact that population growth

is not affected by household hunger whereas population loss is. Careful consideration

was given to this design decision and the motivations were as follows: Whether birth

rate is affected by resource scarceness is an open question. In fact, it is more likely the

case that the time required to get resources plays a greater role on birth rate than the

actual resources themselves [155]. This sentiment is also echoed in research pertaining

to the Neolithic transition where birth rates seemingly skyrocketed at the advent of

agriculture [156]. Conversely, death rates are undoubtedly linked to resource scarceness

or famines which motivates its inclusion in determining the loss of household occupants.

Additionally, both parameters are entirely configurable meaning that the birth rate can

be increased of decreased by the modeller should the results conflict with archaeological

data.

For population migration, the Population Migration System will, every yrs_per_move

iterations, query each household by generating a random number and comparing it to

the agent’s satisfaction (See Equation 3.20). If the function returns true, the agent will

move to another settlement with the most resources. If no settlements exist that will

allow the household to meets its resource requirements20, it will instead form its own

settlement at a random location in the environment.

Lastly, we will discuss the logic for the split_household (See Algorithm 15) function as

it differs slightly depending on the type of agent being used. First, the function is called

when a household reached carrying capacity. Then, for all agent types, a new household

(of the same type) is created. This household is called the offspring household and it

will be given half the parent’s occupants, resources and owned_land21. The offspring

household is not given the parent’s load as their creation signifies the arrival of a new

social figure who has to earn their non-monetary related social status.

Other properties such as hunger and satisfaction are simply copied across to the offspring

household. For the traditional, rb-adaptive and utility agent-types, properties that make
20The agent will explicitly look at nearby settlements average resource level and, if that value is greater

than its required resources, it will move to that settlement.
21This is a smart split function such that the distribution of able workers and child occupants is

approximately equal across the two new households.

Methodology 139

Algorithm 15: Pseudocode for the split_household function. Note: This code as-
sumes that the correct agent-type is being created when new Household() is called.

1 def split_household(parent : Household):
2 offspring_household = new Household()
3 offspring_household.settlement = parent.settlement
4 offspring_household.resources = parent.resources * 0.5
5 parent.resources -= offspring_household.resources
6 offspring_household.hunger = parent.hunger
7 offspring_household.satisfaction = parent.satisfaction
8 split_land(parent, offspring_household)
9 split_occupants(parent, offspring_household)

10 # Evolutionary Algorithm needs to operated on IEAgents
11 if type(parent) == IEAgent then
12 other_parent = select_other_parent(parent)
13 forall p : Gene in offspring_household do
14 offspring_household.p = random_select([parent.p, other_parent.p])
15 if random() < mutation_rate then
16 offspring_household.p = mutate_gene(offspring_household.p)
17 end
18 else
19 forall p : Gene in offspring_household do
20 offspring_household.p = parent.p
21 end
22 add_agent_to_environment(offspring_household)
23 return

their genotype are also just copied across (that is, no GA is applied to them). If the

agent is an IE agent, another parent will be selected via roulette wheel and uniform

crossover will be applied to select the offspring households gene values. The other parent

household will typically be from the same settlement as the original parent but, it is

possible for households, from other settlements, with extremely high social status to be

selected. Additionally, each gene has a chance, defined by the mutation_rate, to mutate.

For all genes (excluding Farm Utility and Forage Utility) random mutation is used while

Gaussian mutation is used for the Farm Utility and Forage Utility genes22.

3.4.3.8 Information Exchange System

The Information Exchange System is the first agent specific system. When using the IE -

agent type, the Information Exchange System will execute every influence_frequency.

The motivation for this is that early on in development, we found that executing this
22This is because the minimum and maximum value for all other gene properties are known beforehand

so random mutation can be used.

Methodology 140

Algorithm 16: Pseudocode for the Information Exchange System. Note: This code
assumes that a belief space has already been created for each settlement. It also
represents the unoptimized version of the code because it improved readability.

1 def information_exchange_system():
2 influenced_belief_space =
3 normative_prob =
4 # Determine Spatial Belief Spaces for each settlement
5 forall set : Settlement in settlements do
6 set.update_belief_space()
7 other_settlements = [s for s in settlements if s.id != set.id]
8 status_array = [s.get_social_status() for s in settlements if s.id != set.id]
9 distance_array = [set.get_distance(s) for s in settlements if s.id != set.id]

10 xtent_array = xtent_distribution(status_array, distance_array, β, m)
11 if max(xtent_array) > 0.0 then
12 index = roulette_wheel(other_settlements, xtent_array)
13 influenced_belief_space[set] = other_settlement[index]
14 normative_prob[set] = set.get_social_status() / status_array[index]
15 else
16 normative_prob[set] = 1.0
17 end
18 # Influence each household probabilistically
19 forall h : Household in Households do
20 if random() < influence_rate then
21 # Domain Influence
22 if random() < mutation_rate then
23 p = select_random_gene(h)
24 h.p = mutate_gene(p)
25 else
26 # Normative Knowledge Source
27 if random() < normative_prob[h.settlement] then
28 bs = h.settlement.belief_space
29 # Spatial Knowledge Source
30 else
31 bs = influenced_belief_space[h.settlement].belief_space
32 forall p : Gene in h do
33 h.p = influence_gene(p, bs) (Equation 3.33)
34 end
35 end
36 return

system every iteration caused rapid homogenization of the belief spaces and poorer per-

forming agents. The reason for this phenomena is due to optimizing nature of the CA.

EAs in general are used as optimization processes. In most optimization processes, the

fitness of a potential candidate solution can instantly be evaluated. This is not the case in

NeoCOOP where newer, potentially more successful, households are not given a enough

time to show that they are better than other households. In fact, it was not uncommon

Methodology 141

for a newly created or mutated household to instantly have their beliefs influenced in

the original CA implementation. This is seemingly a unique problem with using opti-

mization techniques (like ML algorithms) in ABM. This is evident in Angourakis et al

[157]’s Food-for-all model where they also delayed the "optimization" process by several

iterations so that an agent’s beliefs could be adequately evaluated.

Belief Spaces are central to how adaptation occurs in the IE agents. In CA literature,

a belief space is a representation of a process’ best solutions. Over time the belief

space is updated to include newly found solutions that are equal or better performing

than previous solutions. The belief space is also what is used to influence the solution

population. In NeoCOOP, we considered using a single global belief space but the idea

was quickly abandoned because it would oversimplify the role local geography and climate

may have on the agent populations beliefs. In Predynastic Egypt, agricultural practices

are theorized to have been adopted asynchronously in part due to local geography (See

Section 3.3.3). A global belief space could not facilitate that kind of behaviour.

Due to these limitations, we opted to create belief spaces for every settlement and instead

treat adaptation over the course of a simulation as a localized optimization process with

each settlement adapting to their local environmental conditions. Formally we determine

a belief space’s gene property as defined by Equation 3.42.

Bs,t(p) =
∑
h∈s

h.status

Ss
Gh,t(p) (3.42)

Where Bs,t is the belief space of settlement s at timestep t. h.status is the social status

of h and Ss is the sum total social status of all households in settlement s. Gh,t(p) the

value of gene property p for household h at timestep t.

While this solution allowed for local adaptation, it did not account for the fact the settle-

ments could affect the cultural beliefs of other settlements. This feature is essential to the

model. As noted in Section 3.3.3, the southern Naqada culture is theorized to have over-

run the northern Maadi/Buto culture over time. To address this limitation, we adopted

Knowledge Sources [102] (See Section 3.4.2.4) which, in traditional CA implementations,

serve as isolated belief spaces which get updated and influence solutions independently.

We adapt this approach by specifying three knowledge sources that settlements may be

Methodology 142

influenced by. The first is their own belief space, this is called the Normative knowl-

edge source, we also stochastically select another settlement’s belief space as the Spatial

knowledge source. We then finally add the Domain knowledge source which is just the

mutation function from the GA. With these three knowledge sources, agents may be

influenced by their own settlement (normative), other settlements (spatial) and other

abstract means23 (domain).

From an implementation perspective (See Algorithm 16), the Information Exchange Sys-

tem will first determine the spatial knowledge sources for each settlement s. This is done

by first building a probability distribution using the XTENT formula (Equation 3.29)

and Equation 3.30. Once the distribution has been created, roulette wheel selection

is used to select which settlement’s belief space will be used as the spatial knowledge

source for settlement s. Additionally, the ratio of social status for s and the spatial

knowledge source are calculated. We call this the normative probability as it describes

the likelihood that s will influence itself. With this implementation, a settlement with

little-to-no wealth or social status is more likely to be influenced by another settlement

with greater social status [40]. This is a direct result of the XTENT formula and is what

allows settlements to influence each other over time.

Once all spatial knowledge sources have been determined, the Information Exchange

System will iterate over all households and determine if they should be influenced in

accordance with the influence_rate. If they are influenced, a knowledge source it se-

lected randomly using the mutation_rate and the normative probability. If the random

value is less than the mutation_rate, the domain knowledge source is chosen. If the

domain knowledge source is not selected, another random number is generated and if

less than the normative probability, the normative knowledge source (the household’s

settlement’s belief space) is selected. If the normative knowledge source is not chosen,

the spatial knowledge source is chosen. This knowledge source is the previously roulette

wheel selected settlement’s belief space (See Algorithm 16, line 13). Lastly, the agent is

influenced by the selected belief space using the Equation 3.33.

Methodology 143

Algorithm 17: Pseudocode for the Rule-based Adaptation System.
1 def rb_adaptation_system():
2 intention_mask = [0.0 for h in households]
3 # Determine adaptation intention each household
4 for i in range(len(households)) do
5 # Calculate Risk Assessment
6 severity = 1.0 - hunger
7 risk_assessment = 0.6 * severity + 0.4 * rand()
8 # Calculate Adaptation Appraisal
9 w_age = 1.0 - 0.12

0.12+(
min(max_age,households[i].average_age())

max_age
)3

10 w_hh_size = 1.0 - 0.12

0.12+(
able_workers(households[i])

carrying_capacity
)3

11 adaptation_efficacy = 0.55 * w_age + 0.45 * w_hh_size + (0.2 - 0.3 *
rand())

12 w_wealth = 1.0

1.0+exp(−3.0∗ households[i].resources
required_resources(households[i])

−0.5)))

13 self_efficacy = 0.3 * w_wealth + 0.6 * households[i].percentage_to_farm +
(0.1 - 0.2 * rand())

14 adaptation_appraisal = clamp(0.5 * (adaptation_efficacy + self_efficacy))
15 # Calculate Adaptation Intention
16 r = risk_elasticity * risk_appraisal
17 p = adaptation_appraisal * (1 - cognitive_bias)
18 intention_mask[i] = p - r
19 end
20 # Update Household properties
21 for i in range(len(households)) do
22 if intention_mask[i] > adapt_threshold then
23 forall p : Property in h do
24 h.p = Equation 3.26
25 end
26 end
27 return

3.4.3.9 Rule-based Adaptation System

The second optional system is the Rule-based Adaptation System (See Algorithm 17). A

lot of the pseudocode presented is an exact replica of the code used in the OMOLAND-

CA’s model (with the exception of the update function which needed to be translated

to our model). Similar to the Information Exchange System, the Rule-based Adaptation

System will execute every adapt_frequency iterations. For each household, the system

will calculate the household’s intention to adapt just as described in Section 3.4.2.2. Once
23The domain knowledge source represents abstract sources of influence such as household innovation,

change in leadership and foreign (outside of the modelling area) interaction.

Methodology 144

that is complete, the system will update each of the adaptive households (households

who have chosen to adapt) in accordance with Equation 3.26.

3.4.4 Limitations of NeoCOOP

NeoCOOP is, to the best of our knowledge, the most complete realization of any ABM

modelling the rise of the Ancient Egyptian State during the Predynastic period. However,

there are several limitations that we wish to discuss. The first of these issues is the

necessity to abstract certain processes to achieve parity with the time-scale of the model.

The agricultural revolution of the Predynastic took thousands of years while vegetation

models and forager behaviour dynamics operate on a time-scale of days or months. It

was not computationally feasible for the model to operate on such a scale so both forager

and vegetation model dynamics had to be abstracted to operate on a yearly scale. Future

versions of NeoCOOP can look at making these processes time-scale agnostic.

The second limitation is the general lack of empirical data available to tune the model

with. We do not have satellite images, exact temperature or flood data from that time

period so all resource availability dynamics are best guess estimates based on data from

present times. Despite this, Section 4.3 shows that the implemented vegetation model

still produces acceptable results.

Third, all models must at some point resort to simplification, NeoCOOP is no exception.

These implemented processes are often more detailed than related models’ equivalent

processes but they are still extremely simple. For one, climate data is applied over the

entire modelling space (as opposed to regional climate data), agents acquire one type of

resource that generically represents all forage and farming food stuffs (at different yields

depending on the action used). This directly ties into the assumptions with agent decision

making. For one, the traditional agents assume that adopting farming is guaranteed in

all circumstances. The utility agents assume that maximizing utility at all costs is the

best course of action. It also assumes that this particular type of decision making is

appropriate when modelling Predynastic Egyptians.

Lastly, we do want to note that despite these limitations, we still believe the results our

model will produce are both useful and valid. As noted before, NeoCOOP is already

more "realistic" than most other archaeological ABM and, with parameter tuning, has

Methodology 145

the potential to provide insight into the emergence of the Ancient Egypt State that would

not be attainable from the archaeological record alone.

3.5 Summary

In this Chapter we sought to highlight the methodological approach we applied when

designing the Neolithic Cooperation Model (NeoCOOP), an ABM capable of modelling

the emergence of the Ancient Egyptian State during the Predynastic period.

We first described ECAgent, an entity-component-system (ECS) based modelling frame-

work we designed for implementing ABM in Python. We highlighted the natural compat-

ibility ECS has with ABM development and demonstrated, by implementing a simple

predator-prey model, the ease at which models could be implemented with ECAgent.

Despite the lack of features, ECAgent shows great potential as an ABM development

framework especially when considering that using Python gives developers access to some

of the most robust software packages available (Numpy, Pandas and Pytorch / Keras are

just some examples).

We then provided an extensive overview of what adaptability or adaptive capacity means

in the context of agent-based modelling. We found that ABM literature seemingly con-

flates the definitions of adaptability, resilience and transformability as just "adaptabil-

ity". Additionally, we noted that no formal process exists for creating truly adaptive

agents. Describing adaptive agents as entities who maintain state information, are ca-

pable of updating their state when they receive new information and have a decision

making process that changes when their state changes, we highlighted how creating such

an agent could be done by ensuring that the agent was connected in an information

exchange network. We demonstrated the effectiveness of this approach by implementing

a simple foraging ant simulator and illustrated how more complex information exchange

networks could create agents with greater adaptive capacity.

This chapter also synthesized literature regarding the formation of Ancient Egypt. The

main findings suggest that the emergence of the ancient state during the Predynastic

period was due to a mixture of both natural and social factors with the social factors

resulting from the natural factors. These factors included the presence of Nile floodplain

and desertification of the surrounding areas. We used these findings to construct a set

Methodology 146

of requirements some hypothetical ABM would need to implement in order to effectively

simulate the Predynastic period.

Using these requirements, we constructed NeoCOOP, and iteration-based ABM imple-

mented using ECAgent. Incorporating a vegetation model, four agent-types and several

additional systems, NeoCOOP was designed to answer the research questions we stated

in Chapter 1. The central focus of the ABM are the four agent-types. The traditional

agents that are simple, rule-based, agents akin to those found in early ABMs. They

are not adaptive but serve as a benchmark for to compare the other agents to. Tak-

ing the rule-based paradigm further, the rb-adaptive agents, based on Hailegiorgis et al.

[147]’s OMOLAND-CA model, are a more accurate representation of modern, adaptive

rule-based agents. We then shifted our designs to ML-based agents and designed the

utility agent which just uses a simple RL algorithm to aid in creating resource acqui-

sition strategies. We then extended the utility agent to create the IE agents who are

capable of exchanging information which each other using two Evolutionary Algorithms.

In the next chapter, we will detail how we will use NeoCOOP to study the adaptability

of the four agent-types.

Chapter 4

Experiments and Results

In this Chapter, we to aim to highlight the experiments used to evaluate the following

research questions stated in Chapter 1:

1. Do agents using machine learning techniques as adaptive mechanisms, exhibit

greater adaptive capacity (recovery and resistance of population and resource lev-

els) [33] than traditional, rule-based, agents when placed into sufficiently adversar-

ial environments (A model of Egypt during the Predynastic period)?

2. Are our adaptive-agents capable of producing new emergent behaviour (such as

polity cycling [34] or strategy specialization [35]) that the traditional, rule-based,

agents could not?

3. Using both the traditional and adaptive-agents, what insights do they provide with

regards to the Predynastic agricultural revolution as it relates to the presence of

the Nile floodplain [12] and desertification [36]?

To achieve this, we conduct scenario experimentation using the NeoCOOP ABM intro-

duced in Chapter 3. By altering the amount of yearly rainfall, temperature and Nile

flood height at each timestep in the model, we will be able to virtually recreate the

Predynastic Egyptian landscape which each of the four agent-types will have to inhabit.

We then monitor how the agents adapt to these changing environmental conditions and,

by measuring the population and resource levels of the agents, we can get an indication

of which agent-types are most adaptive.

147

Experiments and Results 148

The Chapter proceeds as follows: Section 4.1 summarizes the GIS and Archaeological

data used in the model. Section 4.2 describes how we generated approximate climate

data for the Egyptian Predynastic, Section 4.3 details how we validated model behaviour.

Section 4.4 highlights the parameter tuning process for the agents as well as the final

input parameters used in our experiments. Section 4.5 contains the results and statistical

evaluation of our experiments. Lastly, Section 4.6 analyzes the results of our experiments

and Section 4.7 concludes the Chapter with a summary.

4.1 Data Acquisition

Given our goal to model Predynastic Egypt as accurately as possible, several outside

data sources were utilized. The difficulty of this process pertained to the unavailability

of several of the input parameters from an Archaeological context (The GIS layers most

notably). To combat this, we extended our data acquisition sources to other Neolithic

communities and, when insufficient still, we utilized modern analogs.

The first of the input data parameters are the GIS layers. Specifically the height and

soil content maps. This data does not exist in an Archaeological context and as such, we

utilized contemporary data instead. The heightmap data was sourced from the ALOS

Global Digital Surface Model [158] and the soil-clay content maps were sourced from

the GLDAS project [159]. Data from both sources were pre-processed into a NeoCOOP

friendly format, the details of which may be viewed in Appendix C. These input images

can also be seen in Figure 4.1.

The next step of the data acquisition process was to determine the scale of the simu-

lations. The population of Egypt at the time is said to have been approximately 350

thousand [36]. Using Lehner’s [143] description of the household unit, we may assume a

average household size of around 5 - 10 people given that it may or may not have included

extended family. This would require us to instantiate between 35 - 70 thousand agents.

Similarly, a 1ha resolution (1 pixel = 1ha) datamap would require a modelling area of

3000× 7500 pixels for a total of 22500000 environmental cells. Running a simulation of

that size is not feasible simply due to the time it would take to complete a single run.

Because we are interested in the entire modelling area (Both Upper and Lower Egypt),

we opted to reduce the environment’s resolution and number of agents by a constant

Experiments and Results 149

(a) (b)

Figure 4.1: The processed height (a) and sand content (b) datamaps used in our
experiments. The sand / clay content data was not available in a higher resolution so

it is noticeably less accurate than the heightmap.

Experiments and Results 150

factor. Determining the factor by which to reduce the scale of the simulation was not

a straightforward process. We considered using an arbitrary value, but we felt it would

detract the overall value of the model and left room for valid criticism. We elected to to

use Allen’s [36] estimation of the population carrying capacity of both foraging and agri-

cultural practices in Ancient Egypt. Allen states that nomadic hunter-gatherer lifestyle

would have only sustained about 30 persons per square kilometer. This ratio is partic-

ularly useful because it describes both the spatial and population factors. These values

are similarly echoed by Gallagher [160] who studied Neolithic communities globally.

Using a square kilometer (100ha) resolution and a reduction in population by a factor of

30, we only need to instantiate 1610 households which the model can easily handle. Allen

and Gallagher also approximate that farming could sustain populations up to approxi-

mately 4 times that of a purely foraging one. This further provided us with data on the

production quantities of both the foraging and farming actions respectively. Addition-

ally, Gallagher notes that hunter-gatherer groups consisted of, on average, 30 individuals.

Given this, we can assign an initial average settlement density of 3 households across 573

initial settlements.

These abstractions of the agent population are not ideal, but it is not without precedent.

Simplifications of the problem domain are commonplace in ABM research and by ensuring

that all the resource and distance related properties are scaled correctly, the model should

still be able to produce valid results.

4.2 Climate Data Generation

Given that accurate climate data of the Predynastic period does not exist, we constructed

interpolator functions which would generate the data instead. The interpolators (See

Equation 4.1) work by defining minimum and maximum ranges and a mixing parameter.

The mixing parameter x ∈ [0.0, 1.0] is derived from various mathematical functions and

when used with the min and max ranges, produces two values lmin and lmax. A random

number is then generated between [lmin, lmax] and set as the generated value for the

global environment property for a single iteration. For rainfall and temperature, min

and max ranges were provided by the World Meteorological Organization (WMO). For

Nile flood height, we use values stated by Bell [161].

Experiments and Results 151

Figure 4.2: An example of how the mixing parameter x is generated over the course
of a simulation run for a single vegetation model property (temperature, rainfall, flood

height). In this example, f = 2500.

lerp(a, b, x) = a+ x(b− a) where a ≤ b (4.1)

As for the interpolators themselves, several were investigated during the early devel-

opment of NeoCOOP (See Appendix D). Interesting results were obtained from these

experiments but they are not the primary focus of this work. What these experiments

did reveal though was that while a simple linear interpolation from a start range to an

end range of values was sufficient at reducing the global rainfall over the course of a

simulation run, it would not be able to accurately reflect the flood dynamics of the Nile

river. Hence, a sinusoid (See Equation 4.2) was used instead.

s(t) = 0.5 + 0.5sin(
2π × t
f

) (4.2)

Where t is the timestep with and f is period of the sinusoid. The motivation for using

a sinusoid relates to the cyclical nature in which environments experience periods of

stress and abundance. Egypt is no different with Hassan [162] illustrating that this was

certainly the case during the formation of Ancient Egypt which would have undergone

several dry and wet seasons. The pseudocode for this process can be seen in Algorithm

18 and example of the output generated by the process can be seen in Figure 4.2.

Experiments and Results 152

Algorithm 18: Pseudocode detailing how climate data (rainfall, temperature and
flood height) was generated for the simulations investigated in this work. Here func
refers to type of functor that takes in the timestep t as input and returns a value
∈ [0.0, 1.0]. The sinusoid function defined in Equation 4.2 is one such function.

1 def interpolator(t : int, min_range : (float, float), max_range : (float, float), func):
2 x = func(t)
3 lower = lerp(min_range[0], min_range[1], x)
4 upper = lerp(max_range[0], max_range[1], x)
5 return random(lower, upper)

4.3 Validation

ABM are notorious for being unpredictable and hard to debug. To combat this, both

ECAgent and NeoCOOP were unit tested to ensure the validity of the results produced

in this work. Code coverage reports were generated to ensure testing completeness and

can be seen in Appendix B.

Additionally, reviews of the outputs of several hundred simulation runs were performed

over the course of NeoCOOP ’s development. No formal review methodology was used

but the process consisted of looking at event logs, generated graphs and animations to

ensure correct model behaviour. Similarly, the model was stress tested and optimized

several times during its development.

4.4 Parameter Tuning and Experiment Setup

The last step before running our experiments was the parameter tuning of the agent-

types. Parameter tuning is a interesting topic in social simulation research. On the one

hand, it is an essential step in the development of ABM but on the other, the metrics

used to find the optimal parameter set(s) can dramatically affect the results produced

by the tuned model. For example, choosing to parameter tune a set of resource sharing

agents based on their ability to accrue surplus resources would inherently bias them

towards selfish behaviour whereas tuning them to minimize community hunger may bias

them towards altruistic behaviour. Alternatively, sensitivity analysis could be used to

better understand the model’s behaviour but this process is complicated for ABMs and

scales poorly as the number of parameters under consideration increases [163].

Experiments and Results 153

Name Value Comment
Traditional

forage gradient 0.68
forage offset 0.0

forage duration 2500 Same as N (See Table 4.2)
forage margin 0.23

RBAdaptive
risk elasticity 0.4 From OMOLANDCA [147]
cognitive bias 0.3 From OMOLANDCA [147]

adaptation intention threshold 0.05
learning rate 0.2

Utility
learning rate range [0.4, 0.6]

IE
learning rate range [0.3, 0.7]
conformity range [0.3, 0.7]
influence rate 0.83

influence frequency 25 iterations
b 2.0 Adjusted from Chliaoutakis
m 0.005 and Chalkiadakis [40]

Table 4.1: Initialization parameters of each agent-type.

We chose to parameter tune our model using Optuna, a Python-based optimization

framework1. Using Optuna, we performed multi-objective optimization on each agent

type. The metrics optimized were the population and resources levels of the entire

population at the end of a simulation run given that we had previously identified these

metrics as indicators of generalized success within the agent population. The fact that

both total surplus resources and population levels were optimized simultaneously also

prevents the agents from biasing their behaviour in one direction that would dramatically

affect the other.

Each agent-type was optimized independently over 50 separate simulation runs (for 150

total). The exception to this is the RBAdaptive agent where we first tested the model

using the same values used in the OMOLANDCA model (See Section 3.4.2.2) and then

adjusted the values after the fact to account for the differences between the two models.

The final results of this process can be seen in Table 4.1.

With the parameter tuning complete, we setup our experiments as follows: For each

agent-type (Traditional, Utility, RBAdaptive and IE), a simulation of length N = 2500

is run (The length of the Predynastic period with buffer zones from the Neolithic and
1Optuna is available at: https://optuna.org/

https://optuna.org/

Experiments and Results 154

Name Value Comment
N 2500 iterations

Initial Agents 1610 See Section 4.1
Initial Settlements 537 See Section 4.1

Birth Rate 0.1% Derived from Allen [36]
Death Rate 0.01% Derived from Allen [36]

Forage Production Rate 1.0 Abstract food unit
Farm Production Rate 4.0 See Section 4.1

Agent Consumption Rate 1.0 Same as Forage Production Rate
Load Difference (L) 0.6 Chliaoutakis and Chalkiadakis [25]

Table 4.2: Initialization parameters for experiments evaluated in this work.

First Dynastic periods). Each simulation is initialized with the properties discussed in

Sections 4.1 and 4.2. 537 settlements were assigned to the environment at different

locations and 1610 Agents (of whichever type of agent is being investigated) were then

randomly assigned to these settlements.

At initialization, agents are randomly assigned values ∈ [0.0, 1.0] for each of their peer

and subordinate resource transfer and attachment properties. Authority transfer was

fixed to 1.0 to ensure that authority figures would always be granted resource transfer

requests when asking the subordinates. The motivation being that an authority figure

would have the means to coerce a subordinate agent to give up their surplus resources.

For the Utility and IE agents, conformity and learning rates were randomly assigned

values in accordance with the ranges stipulated in Table 4.1. Forage and Farm utility

were set to 1.0 and 0.0 respectively. This is because the agents start out as hunter-

gatherers and need discover the utility value associated with farming organically over

the course of a simulation run.

Given the stochastic nature of the model, 50 uniquely seeded simulations were run for

each agent-type (totalling 200 simulation runs across all agent types). Additionally, the

same seed values are used across these agent-types such that given some seed value,

the same initial settlement distributions and climate conditions will be pseudo-randomly

generated regardless of agent-type, ensuring that each agent-type is fairly evaluated. A

summary of these initialization parameters have been included in Table 4.22.
2Several parameters have been omitted from Table 4.2 due to their irrelevancy in this work. Given the

macro scale of the simulation area, micro properties such as household carrying capacity and individual
maturity were disabled.

Experiments and Results 155

4.5 Results

Kruskal: 4.59× 10−36

Traditional Utility IE RBAdaptive
Traditional – 5.38× 10−27 1.70× 10−25 1.28× 10−4

Utility 5.38× 10−27 – 1.00 1.51× 10−10

IE 1.70× 10−25 1.00 – 1.25× 10−9

RBAdaptive 1.28× 10−4 1.51× 10−10 1.25× 10−9 –

Table 4.3: Summary of the Posthoc Dunn Test (p = 0.05) performed on the Total
Household Population for each Agent Type. Significant differences have been high-

lighted in grey.

Kruskal: 3.52× 10−40

Traditional Utility IE RBAdaptive
Traditional – 9.38× 10−5 3.26× 10−17 1.36× 10−37

Utility 9.39× 10−5 – 9.17× 10−5 3.57× 10−17

IE 3.26× 10−17 9.17× 10−5 – 9.84× 10−5

RBAdaptive 1.36× 10−37 3.57× 10−17 9.84× 10−5 –

Table 4.4: Summary of the Posthoc Dunn Test (p = 0.05) performed on the Total
Surplus Resources for each Agent Type. Significant differences have been highlighted

in grey.

To compare the adaptive capacity of the agent-types, their population levels and surplus

resources were compared. As seen in Figure 4.3a, a visual distinction between the ML

agents (IE and Utility) and the rule-based agents (Traditional and RBAdaptive) can

be seen. Conversely, Figure 4.3b demonstrates a clear visual distinction between the

agents with information sharing capabilities (IE and RBAdaptive) and those without

(Traditional and Utility).

To confirm this, Kruskal-Wallis tests (p = 0.05) were performed on both the population

and surplus resources of each agent type. Both tests revealed significant differences

between the agent-types and a posthoc Dunn test (p = 0.05) with Bonferroni correction

was performed to identify which differences between the agent pairs were significant. The

results of these tests are reported in Tables 4.3 and 4.4.

The results of the Dunn test revealed that for total Household population, the IE and

Utility agents did not have significantly different populations but, they produced pop-

ulations significantly greater than the population of the RBAdaptive and Traditional

agents. Additionally, the RBAdaptive had significantly greater population levels than

the Traditional agents.

Experiments and Results 156

(a)

(b)

Figure 4.3: Plots of the average total agent population (a) and surplus resources of
the entire agent population (b) for all agent-types investigated.

Experiments and Results 157

For total surplus resources, the RBAdaptive agents gathered significantly more surplus

resources than all other agent-types. The IE agents gathered significantly more surplus

resources than the Utility and Traditional agents and the Utility more surplus resources

than the Traditional agents.

Agent-Type Population Resources Final
IE 1 2 1

Utility 1 3 2
RBAdaptive 3 1 2
Traditional 4 4 4

Table 4.5: Final adaptability rankings of the agents based on their ability to maintain
and increase both population and surplus resource levels across a simulation run. For

example, a rank of 1 means that the agent ranked first in that metric.

Finally, we ranked the agents based on their performance across both metrics investi-

gated. The results of this ranking are reported in Table 4.5. Unsurprisingly, the Tra-

ditional agents performed the worst, ranking last across both metrics. The Utility and

RBAdaptive agents were jointly ranked in second due to both of them scoring a first and

a third place. Lastly, the IE agents were ranked first and, by the metrics investigated

in this work (total population and resource levels), are considered to have the greatest

adaptive capacity out of the agent-types investigated.

4.6 Analysis

In this Section, we seek to explain the underlying dynamics that produced the results

reported in Section 4.5. We will do this by analyzing the emergent behaviours of the

agent-types. In particular, Section 4.6.1 analyzes the rate at which agricultural prac-

tices are adopted across the agent-types, Section 4.6.2 reviews settlement density and

population migration dynamics and Section 4.6.3 details the importance information

throughput played on the adaptive-capacity of the ML agent-types. Lastly, 4.6.4 syn-

thesizes these findings and highlights how they relate to the formation of Ancient Egypt

during the Predynastic period.

Experiments and Results 158

(a)

(b)

Figure 4.4: Percentage of FARM actions performed by the original agent-types
(a) and the supplementary experiments run for the IE agent-type (b). Note: Fig-
ure (b) is labelled such that IE-N indicates that the IE agent-type was used with a

farm_production_rate of N.

Experiments and Results 159

4.6.1 Rate of Emergent Agricultural Practices

An examination of the complementary data generated by the simulations revealed the

importance the rate at which the agent-types adopt farming as the primary resource

acquisition strategy has on their final population level. Figure 4.4a demonstrates this

whereby it can be seen that ML agents (Utility and IE)) rapidly adopt agricultural

practices while the rule-based agents take longer. This coincides with the magnitude of

their final population levels whereby our results suggest that rapid adoption of farming

positively affects the final population levels exhibited by a group of agents. Addition-

ally, Figure 4.4a reveals that the Utility agents, while rapid in their initial adoption of

agricultural activities, fail to make farming their dominant resource acquisition strat-

egy. Conversely, farming does emerge as the dominant strategy in the other agent-types

with the RBAdaptive agents completely adopting farming while the IE agents oscillating

above 75% adoption. Interestingly, the results obtained by the Utility agents suggest

that this adoption need not be dominating. In fact, the results indicate that the rate

of adoption is only important for agents who are at an increased risk of dying due to

increased environmental stress.

Kruskal: 9.88× 10−19

IE-1 IE-2 IE-3 IE-4
IE-1 – 0.0124 2.54× 10−10 4.62× 10−17

IE-2 0.0124 – 2.64× 10−3 2.0× 10−7

IE-3 2.54× 10−10 2.64× 10−3 – 0.27

IE-4 4.62× 10−17 2.0× 10−7 0.27 –

Table 4.6: Summary of the Posthoc Dunn Test (p = 0.05) performed on the total
Household population for each farm production rate supplementary experiment. Sig-

nificant differences have been highlighted in grey.

Given that Utility maximization is the central driver of the ML agents, we first assumed

that the rapid adoption of farming was due to the resource production rate of farming

when compared to foraging. To further investigate this claim, supplementary experiments

were run using the IE agent whereby we altered the rate of production produced by the

FARM action. The exact values used were farm_production_rate = [1.0, 2.0, 3.0, 4.0]

where 1.0 indicates that the FARM and FORAGE actions return the same amount

of resources on average and 4.0 is the value used in the original experiments. Figure

4.4b reveals that even when there is a slight surplus in agricultural production, it will

rapidly emerge as the dominant strategy. Additionally, Figure 4.5 shows that the rate

Experiments and Results 160

Figure 4.5: Household population levels for farming production rate supplementary
experiments. Note: The Figure is labelled such that IE-N indicates that the IE agent-

type was used with a farm_production_rate of N.

of agricultural adoption significantly (See Table 4.6) affects final Household population

levels, albeit with diminishing returns. Interestingly, when the production rate of foraging

and farming are the same, agricultural communities will still emerge. This supports

Gallagher’s results were she showed that the production rate of farming may not be the

only reason why agricultural communities emerged throughout Neolithic communities

across the globe [160].

The ML agents failure to fully adopt farming is the reason they didn’t accrue the most

amount of resources across the simulation runs. The RBAdaptive agents may have taken

longer to transition from foraging to farming, but they consistently maintained a close to

100% adoption rate once it was reached. This, coupled with the period (approximately

2000 iterations) over which they maintained this behaviour meant that they could ac-

crue more surplus resources. Oscillations are also observed in the agricultural adoption of

the ML agents. This emergent behaviour coincides with periods of environmental stress.

During periods of stress the ML agents will explore the non-dominant method of resource

Experiments and Results 161

acquisition (foraging in the case) because of the how their exploration-exploitation heuris-

tic works (See Section 3.4.2). The magnitude of these oscillations are also increasing.

This is discussed more in Section 4.6.2 but the reason for this behaviour is related to

settlement density and the agent-type’s significantly greater populations. This is further

supported by Figure 4.4b where the lower Household population scenario’s (IE-1, IE-2

and IE-3) show similar oscillations at reduced magnitudes.

The Utility agent-type’s failure to adopt farming as the primary resource acquisition

strategy is interesting. For one, it suggests that the adoption of agricultural practices

by Predynastic Egyptians cannot be solely explained by environmental stress. This is

discussed more in Section 4.6.4 but there are regions (the Delta specifically) which did

not suffer from the increasingly arid conditions surrounding the Nile Valley. The Util-

ity agents in these regions simply do not adopt farming because they have no need to.

This behaviour is also an indication that cultural influence from other settlements or

households is needed to convince these foraging agents that farming is better. This is

demonstrated by the IE agents which adopt farming to a much greater degree (See Fig-

ure 4.4a). The only difference between the two ML agents is the IE agents’ ability to

exchange information among themselves. Our results suggest that this cultural infor-

mation exchange is key to explaining the widespread adoption of agricultural practices

across all of Predynastic Egypt.

Lastly, it is appropriate to indicate that the rate of adoption observed in the ML agents

is so fast (∼ 50 iterations) that it is may not necessarily be realistic. This is discussed

further in Sections 4.6.4, but this phenomena is mostly attributed to the simplicity of

farming and the fact that no learning phase needs to occur to reap maximum rewards.

4.6.2 Settlement Density and Population Migration

Unsurprisingly, our results indicate that an increase in agricultural practices negatively

correlates with population migration. As shown in Figure 4.6b, the Utility agents are the

most mobile with one-fifth of the entire population moving on average towards the end of

a typical simulation run. They are also the agent-type that adopted agricultural practices

the least (See Section 4.6.1). Furthermore, an increase in the amount of move actions

can be observed in the IE agents towards the end of the simulation. This corresponds

with the decrease in agricultural adoption noted in Section 4.6.1. Lastly, the RBAdaptive

Experiments and Results 162

(a)

(b)

Figure 4.6: Plots of the average number of settlements per household (a) and the
average number Household move actions (b) for each agent-type.

Experiments and Results 163

agents exhibit close to zero population migration which corresponds to their near 100%

agricultural adoption rate.

Further analysis of the type of move actions performed revealed that most move actions

performed by the agents are from one settlement to another (as opposed to moving

and creating a new settlement). This is shown in Figure 4.6a where we it can be seen

that settlement density, the number of settlements per Household agent, decreases for all

agent-types investigated. This means that despite increased movement, the agents prefer

to move between already established settlement sites. Furthermore, the large quantity

of movement actions exhibited by the Utility and Traditional agents results in persistent

settlements with transient identities. That is, the location of the settlements remain

fixed but the Households that make up the settlement frequently change.

Explaining the migratory behaviour of the agents required further investigation. In

NeoCOOP, agents move when they are dissatisfied. This dissatisfaction is an indication

that an agent’s resource needs are not being met. As shown in Section 4.5, none of the

simulations exhibited resource scarcity. This motivated us to investigate the distribution

of these resources which we measure using the Gini Index. As shown in Figure 4.7, the

Utility agents show extreme inequality while the other agent-types only have moderately

high inequalities. The emergence of high socioeconomic inequality is expected behaviour

(See Section 4.6.4), and explains the migratory behaviour of the agents.

As detailed in Section 3.4.3.7, agents will migrate to settlements where the average house-

hold resource levels are about equal or above their consumption needs. If no settlements

meet these requirements, the agents will create a new settlement and move there. In

the Utility simulation runs, the magnitude of the emergent inequality arises due to the

distinct partitioning of the agents into those who farm and those who forage. The seden-

tary farming agents accrue a surplus of resources which attracts the foraging agents to

them. The foraging agents then move between these farming settlements. This creates

an effect whereby large settlements emerge housing wealthy farmers and ’visiting’ for-

agers. While this phenomena is certainly interesting, its applicability to Predynastic

Egypt is discussed in Section 4.6.4. At the very least, the Utility agents do highlight the

impact the agent’s migration function has on its outputs and raise questions about what

emergent behaviour could arise if the function or its parameters were different.

Experiments and Results 164

Figure 4.7: Average Gini-Index of each agent-type investigated.

4.6.3 The Importance of Information Throughput

As shown in Section 4.6.1, the production rate of farming played a significant role in

determining the final population level of a simulation run. However, it failed to explain

the rapid adoption of farming by the IE agents. This Section explores this behaviour

through the lens of cultural and biological information exchange. In particular, we look

at the effect information throughput has on the model’s final output.

In NeoCOOP, the IE agents adapt their cultural properties based on the information

they learn by themselves and receive from their peers (See Sections 3.4.2.4 and 3.4.3.8 for

information on this learning and exchange process). The properties that moderate the

rate at which agents receive this information are the stubbornness and conformity agent

parameters. In a ML context, these values are the agents’ learning rates for individual

and social learning processes. It stands to reason that throttling the rate of information

exchange may affect the model’s final results.

We investigate this claim by conducting additional experiments whereby we alter the

agents’ stubbornness and conformity values to the following 11 discrete values:

Experiments and Results 165

∈ [0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1] for a total of 121 parameter

combinations3. Stubbornness and conformity values selected per scenario are fixed and

homogenized across the agent population. That is to say that we disabled the evolution-

ary algorithms from acting on these two agent properties such that they remain constant,

and equal, for all agents for the duration of a simulation run.

Figures 4.8a and 4.8b show the total Household population and Gini Index for the sup-

plementary experiments investigated. The results indicate that stubbornness (individual

learning rate) is the key parameter in determining final Household population levels and

that these two values (individual learning rate and final population level) are positively

correlated for the range of values investigated. This result is not surprising. The ability

for an agent to quickly identify and adapt to external stressors is clearly going to be more

effective at ensuring the agent’s survival than an agent that must rely on receiving the

information from its peers before adapting (high conformity low individual learning) or

an agent that does not learn from its peers and is incapable of adapting themselves (low

conformity low individual learning rate). In terms of understanding how these parame-

ters affect the model, we know from Section 4.6.4 that the faster the rate of agricultural

adoption, the greater the final Household population. These results further confirm this

behaviour by demonstrating that limiting the individual learning rate of the agents, their

rate of agricultural adoption is slowed and their final population levels are lower.

Results indicate that, with the exception of the low individual learning rate scenarios

(stubbornness = 0.0), conformity negatively correlates with inequality and that individual

learning rate positively correlates with inequality for the range of values investigated.

This is can be seen in Figure 4.8b where the top scenarios (high conformity) have a

lower Gini Indices between 0.3 and 0.5 while the bottom scenarios (low conformity) have

Gini Indices between 0.5 and 0.75. This suggests that while high individual learning

rates are important for determining population growth, the ability to effectively share

this learned information is what promotes equality (relative to the other scenarios).

Lastly, the extreme inequality found at low individual learning rate scenarios is directly

attributed to the inability for the agents to learn how to farm by themselves (because the

stubbornness value is 0.0). Thus, only mutations of the forage and farm utility values (by

either the GA or CA) will produce agents which farm. These lucky few agents who do
3The rest of the model’s parameters are the same as those presented in Section 4.4.

Experiments and Results 166

(a)

(b)

Figure 4.8: Final Household population (a) and Gini Index (b) for supplementary
learning rate experiments.

Experiments and Results 167

farm will acquire excess resources which causes the inequality value to rise dramatically

to the > 0.9 value observed in Figure 4.8b.

Contextually, these results demonstrate how culturally distinct societies may emerge

based on their ability to share knowledge. In Predynastic Egypt, distinct northern and

southern cultures emerged [11]. To some researchers, northern communities are said to

have been more egalitarian than their southern counterparts [164]. Our results suggest

that, if this was the case, it may mean that the northern cultures had low individual

adaptive capacity but high collective adaptive capacity (high conformity low learning

rates in our experiments). Conversely, the northern communities would have exhibited

greater individual adaptive capacity with lower collective adaptive capacity (low confor-

mity high learning rates in our experiments). Interestingly, lack of knowledge sharing

between southern Egyptian communities may have been intentional but, investigating

this claim is beyond the scope of this research.

It is worth noting that the stubbornness and conformity properties were never intended to

represent external learning limitation factors, but these experiments certainly leveraged

them as such. These experiments have identified that the acquisition and dissemination

of knowledge likely played a significant role in forming of cultural identifies in Predynas-

tic Egypt. With that in mind, our supplementary experiments were limited as our model

does not contain any explicit information limiting systems4 and the forced homogeniza-

tion of the agents’ stubbornness and conformity values prevented us from understanding

the dynamics that would emerge from a heterogeneous population, facets that can be

explored in future work.

4.6.4 Results in the context of Predynastic Egypt

In this Section, we contextualize the results obtained in both our main and supplementary

experiments to Ancient Egypt during the Predynastic period. This is done by looking

at each of the Sections before this (From Section 4.6.1 to Section 4.6.3) and illustrating

how, if at all, the model’s results relate to relevant literature.
4That is, natural or social systems that limit the exchange of information. For example, an impassable

river would a natural information exchange limiter while the deliberate hoarding of knowledge by elites
would be a social limiter.

Experiments and Results 168

In general, the model’s results are mixed with all agent-types simultaneously exhibit-

ing both plausible and improbable behaviour. This is most clearly shown in Section

4.6.1 where all agent-types adopt farming as their primary resource acquisition strategy.

However, the rate at which this adoption occurs is not realistic. A primary reliance on

domesticated animals and plants is likely to have taken hundreds of years [11]. The

ML agents did it in less than 50. Conversely, RBAdaptive agents took a more plausible

400 years to fully adopt farming but, the agents did it uniformly across the population

demonstrating a distinct lack of cultural individuality.

Additionally, our results revealed the importance surplus resource production has on the

adoption of farming across the entire population. Neolithic communities are likely to have

invested significant time to get the production rate of farming to provide such a surplus,

further reinforcing the adoption of agricultural practices. It is noted by several authors

that farming produced a significant surplus great enough to enable the construction

of mega-structures such as temples and pyramids [36]. Our experiments suggest that

agricultural practices would have have emerged without such a surplus initially present

but, that it is only through the discovery of technological mechanisms of extracting

said surplus, that agricultural adoption would become the dominant resource acquisition

strategy across the entire region’s population.

Section 4.6.2 looked explicitly at the migratory patterns of the agents. It was revealed

that as agricultural practices became dominant, so too did a preference towards a seden-

tary lifestyle. This well documented across many ancient societies (including Predynastic

Egypt) [165] as farming required investing in infrastructure and equipment that would

be difficult or impossible to move.

The ML agents produced an emergent behaviour whereby foraging households emerged

and regularly moved between these larger settlements. This behaviour is attributed to

the heuristics used by agents when determining where they should relocate to. Allen

[36] describes the migration of Upper Egyptians to Lower Egypt due to unsatisfactory

living conditions. Our model, while likely unrealistic in its final results, does reveal that

unfavourable living conditions certainly did arise and population migration does occur

under these circumstances. The choice of when and where to move is complex and all of

its facets were not captured by the model.

Experiments and Results 169

Lastly, Section 4.6.3 reviewed the effect information throughput had on the emergent

properties of the model. Results indicate that the ability to acquire and share information

has a significant effect on the dynamics of the model. When throughput is high, a

greater population that is relatively more equal emerges. When information sharing is

low, greater inequality emerges. Stevenson [8] describes knowledge as a resource to be

monopolized. Our results support this claim, indicating that the monopolization (high

information throughput of only a few individuals) and exploitation of knowledge may

explain5 many of the dynamics observed in Ancient Egypt.

Our model was unequipped to tackle this endeavour directly but, it would be interesting

for future work to evaluate what dynamics emerge in populations with variable informa-

tion throughput as well as mechanisms by which the agents might deliberately withhold

or share specific information to maximize their social standing.

4.7 Summary

In this Chapter, we outlined the process used to setup and run the experiments we

designed to investigate this work’s primary research questions. We first discussed how

we acquired the Archaeological and GIS data used in this work and how we used this

data to correctly scale our model.

We then described how the absence of accurate climate data from the Neolithic period

forced used to generate the data ourselves. We used interpolators to do this which allowed

us to simulate general climate change as well as seasonal Nile floods.

We discussed how our model and agent’s were parameter tuned. We first used sensitivity

analysis to identify extrema in the model’s input parameters and then used Optuna to

paramater tune each of agent-types within these extrema.

For our experiments, we ran 50 simulations per agent-type initializing each simulation

to run for 2500 iterations with 1610 agents and 537 settlements, recording the total

household population and total surplus resources (our adaptability metrics).

Visually distinct results were obtained and Kruskal-Wallis and Posthoc Dunn tests (p =

0.05) were performed to test for significance. The tests revealed that the Traditional
5That is not to say that no other causal factors exist, just that monopolization of the knowledge

domain was one of them.

Experiments and Results 170

agents performed the worst, the Utility and RBAdaptive agents performed similarly and

that the IE agents ranked highest and are considered the most adaptive agent-type

investigated.

Further analysis of our results revealed that while the model’s outputs were interesting,

they were not necessarily realistic in a Predynastic Egyptian context. Despite this,

several emergent phenomena were observed such as emergent inequality and population

migratory patterns. Furthermore, our model identified agricultural productivity and

information (knowledge) monopolization as key facets of the formation of Ancient Egypt

during the Predynastic period, signaling opportunity for future research endeavours.

Chapter 5

Discussion

In this Chapter, we synthesize our findings from Chapters 3 and 4 and present a critical

evaluation of the research questions presented in this work. Overall, the findings of this

work clearly show that adaptive-agents are more suited to modelling the dynamics of

complex environments than their rule-based counterparts. More specifically, our results

demonstrate that ML algorithms are particularly well suited as these adaptive mech-

anisms given that they not only allowed our agents to maintain high population and

resource levels, they facilitated the emergence of additional emergent phenomena such

as resource acquisition strategy specialization. It is our hope that the findings presented

in this work pushes the state of the art such that future research endeavours seek to use

truly adaptive-agents in their complex Archaeological ABM.

The rest of the Chapter is divided into sections that correspond to said research questions.

Section 5.1 compares and contrasts the Machine Learning agents to the rule-based agents,

Section 5.2 details the emergent phenomena produced by NeoCOOP across all agent-

types, Section 5.3 discusses the NeoCOOP model and how it can be further used to study

the emergence of Ancient Egypt during the Predynastic Period and Section 5.4 reviews

the cost of complexity in Agent-based Modelling and how it applies to development of

adaptive-agents. The Chapter concludes with a summary (Section 5.5).

171

Discussion 172

5.1 Machine Learning vs. Rule-based Agents

We sought out to investigate whether agents using machine learning techniques as adap-

tive mechanisms, would exhibit greater adaptive capacity than traditional, rule-based,

agents when placed into a sufficiently adversarial environment. Our results suggest that

ML agents are indeed more adaptive than their rule-based counterparts. The IE agent

type ranked first and the Utility agent ranking similarly to the more complex RBAdaptive

agent. Additionally, our suspicions about rule-based agents were appropriate. They were

less adaptive and produced fewer emergent behaviours overall. However, ML agents are

not a panacea and further work will need to be done to address several issues identified

in this work.

The foremost issue we encountered was the unrealistic emergent behaviour produced by

the ML agents. This took the form of rapid agricultural adoption and cyclic population

migration patterns. Conversely, the RBAdaptive agent-type, did not exhibit this type of

behaviour. As noted by Zhang et al. [166], this is quite a common issue when integrating

ML techniques with ABM. This issue primarily occurs because of the nature in which

ML techniques learn or evolve. Most ML techniques used in ABM are traditionally used

to optimize some objective function. For example, ANNs minimize loss, RL algorithms

maximize reward and EAs can be used to either maximize or minimize a fitness func-

tion(s). This means that, regardless of whether it is realistic or not, an ML agent will

perform actions that optimize its objective functions as much as possible. The nature

of the objective function will dictate the outputs produced by the model. In our model.

our agents discovered that farming was beneficial and adopted it rapidly because it was

the most optimal thing to do (it maximized their social status). They achieved this by

abusing the simple nature of the model’s farming mechanisms which is, from our per-

spective, both a blessing and a curse. For one, it supports Recknagel’s [71] statement

that ML agents are capable of producing emergent behaviour as well as overcoming the

rigid structure of traditional ABM, exploring realms unanticipated which our rule-based

agents just simply could not do. On the other hand, the fact that ML agents will abuse

potential loopholes and the simplicities of a model naturally dictate that more effort

must be made during the development phase to ensure it does not happen.

The second issue pertains to the untranslatable nature of the ML algorithms’ parameters

when compared to rule-based algorithms whose parameters may have been derived from

Discussion 173

external data sources. For example, we called the individual learning rate parameter of

the ML agents stubbornness because that is the type of behaviour it caused the agents

to exhibit. However, what does a stubbornness of 0.9 actually mean? Additionally, how

one translates the agent’s stubbornness to actual human behaviour is unclear. Con-

versely, rule-based mechanisms have the advantage of potentially being constructed from

sociological and psychological studies or the subsequent conceptual models constructed

from said studies. For example, the risk elasticity parameter of the RBAdaptive agent

comes directly from protective motivation theory and so translating its parameter value

between the model and reality is easier.

This ML parameter set to reality translation dilemma is further elucidated by the fact

that Zhang et al. [166] describe raising learning rate parameters in ABM despite us

having to lower the learning rates substantially in Section 4.6.3 in order to get the IE

agents to exhibit different and interesting behaviour. Parameter values do not necessarily

translate from one model to another and the effect said parameters have on the model

are also unlikely to be similar, even if the models are similar in domain. Additionally,

parameter tuning mechanisms may not necessarily be the best way to parameterize ML

agents. Again, parameter tuning requires that a modeller define objective functions that

define the quality of a given parameter set. Human behaviour may not be capturable by

simple objective functions because human behaviour is inherently unoptimal [167].

Lastly, we would like to discuss the method by which the ML agents were created. In

Section 3.2 we detailed how adaptive agents could be developed using the concept of

information exchange. Overall, we found this process to be promising. The RL and EA

algorithms implemented in this work fit naturally within the model and this is part due to

using information exchange to understand how these algorithms would affect the agents.

One aspect that we did not consider was information throughput which, as shown in

Section 4.6.3, significantly impacts the adaptive capacity of the agents. While it may

seem obvious that information throughput affects the dynamics of a model, it may do

so in obscure ways. For example, restricting information throughput may limit adaptive

capacity like it did so in our work, but it may increase adaptive capacity in others. The

same logic could be applied to increasing information throughput. While we could not

explore this concept much in this work, it would be interesting to do so in future.

Discussion 174

5.2 Emergent Phenomena

Our second research objective sought to determine if our adaptive (ML) agents were

capable of producing new emergent behaviour (such as polity cycling [34] or strategy

specialization [35]) that the traditional, rule-based, agents could not. In total, three

identifiable emergent phenomena (increased settlement density as a result of agricul-

tural adoption and emergent social inequality) were observed for all agent-types and

two additional phenomena (cyclic population migration and mixed resource acquisition

preferences) for the ML agents. Zero unique emergent phenomena were observed for the

RBAdaptive agents while the Traditional agents exhibited the same cyclic population

migration phenomena as the ML agents. These results suggest that ML agents are in-

deed capable of producing new emergent behaviour when compared to similarly complex

rule-based agents.

While these results are promising, Section 5.1 revealed that these phenomena may be

the result of unrealistic agent behaviour. In our case, cyclic population migration was

once such phenomena. That is not to say that the migration pressure was unrealistic,

but rather that the action of moving cyclically from one settlement to another was the

result of failing to capture necessary dynamics that would allow the agents to make more

informed migratory decisions as opposed to moving between the same few settlements

that could not meet their resource requirements. It is our belief that had the agents’

decision making processes accounted for these dynamics, their migratory patterns would

have changed substantially.

A limitation of this work relates to the complexity of the agents. In order to make

the agents comparable, we could not leverage ML techniques to their fullest extent.

The Utility agent-type was intended to be equivalent in complexity to the Traditional

agent-type and the IE agent-type equivalent to the RBAdaptive agent-type. Had we not

followed this convention, NeoCOOP would likely have been two separate, incomparable,

models. Research published over the duration this project [41–43] has demonstrated

that focused development and exploration of the ML agents capabilities can produce

meaningful results. It is our belief that this trend will continue and that future efforts,

using NeoCOOP, will demonstrate the compatibility, potential and benefits ML adaptive-

mechanisms have on the study and simulation of artificial ancient societies.

Discussion 175

5.3 The Formation of the Ancient Egyptian State

Our final research objective sought to gather insights into the Predynastic agricultural

revolution as it related to the presence of the Nile floodplain [12] and desertification [36]

of regions beyond the Nile Valley. Overall, our results were able to confirm several claims

about the living conditions of Egypt during Predynastic period. For one, the Egyptian

landscape was indeed unlivable outside of the valley. This did restrict the population

and force movement to remain along the Nile and, without the Nile, Ancient Egypt is

unlikely to have existed as we know it today. Given this, we can confidently state that

the active natural factors (the presence of the Nile and desertification of the surrounding

areas) had a significant impact on the formation of the Ancient State. In particular,

Allen [36] and Anđelković’s [12] theories on the dynamics that arise from these natural

factors are attractive explanations.

To simply state that the Nile had an impact on the formation of Ancient Egypt is

perhaps obvious and uninformative. There is not much debate that this was the case

but the social dynamics that arose from these natural factors are. Various theories

reviewed in Section 3.3.2 place a specific emphasis on specific elements of this process.

The power of the individual [140] or the social and natural contexts that supersede any

one individual’s ability to affect this process as a whole [12, 36] being the two most

common. In truth, each theory is likely to be accurate to some degree. It is undoubtedly

true that opportunistic individuals could have exploited Egypt’s unique circumstances to

their advantage resulting in its grand unification at the start the Dynastic Period but, it

is also undoubtedly true that the preceding social and natural factors could have played

a role in this process regardless of any one individuals actions. Our results do not refute

or prove any these theories but, they do provide insights that could refine or produce

new theories about the formation of Ancient Egypt.

In particular, the production rate of agricultural activities and the ability acquire and ex-

change knowledge were identified as the potential candidates for future work. Our results

showed that the surplus produced by agricultural activities was pivotal in determining

the rate of its adoption and that even without a surplus, farming could still merge as

a non-dominating resource acquisition strategy. It would then follow that determining

when, where and how this surplus was discovered is of great importance to understanding

the dynamics that underpinned the formation of the Ancient Egyptian state. There is

Discussion 176

evidence to suggest that farming was introduced by traders from the Near East [36] but,

that does not explain its adoption nor the cultures that emerged from its adoption.

In terms of the acquisition and sharing of knowledge (information), our results indicate

that the individual’s capacity to acquire and adapt to knowledge, positively correlates

with the population’s ability maintain steady population growth. Similarly, our results

indicate that the capacity for individuals to share information is negatively correlated

with the emergence of inequality. That is, societies that share information more freely are

likely to be, relatively, more equal. There is much work still be done in this regard because

our experiments did investigate mixed populations. That is, populations where individual

and group knowledge acquisition is varied. In particular, it would be interesting to

observe the emergent dynamics that result from groups of agents that are capable of

monopolizing the knowledge domain [8] such that they are the only ones who may reap

the benefits of new found discoveries (increased agricultural production for example).

5.4 Agent-based Modelling and Simulation Complexity

ABMs are fundamentally developed in one of two ways: They are either constructed

top-down, general-to-specific, using the KISS approach or they are constructed bottom-

up, specific-to-general, using the KIDS approach (See Section 2.1.6) with NeoCOOP

developed using the latter. The motivation for this decision was primarily due to the

complexity of the domain being simulated (Ancient Egypt during the Predynastic Pe-

riod). In particular, the several natural and social factors identified in Section 3.3.3

necessitated that we start with a complex model if we had any hope of accurately rep-

resenting the Egyptian Predynastic Period. We do not believe that it was incorrect to

use the KIDS approach, but the decision came with a set of undeniable disadvantages,

particularly for archaeological ABM, that we wish to discuss further.

The experiments conducted in Section 3.2.5 suggested that there would be diminishing

returns to using adaptive (more complex) agents in increasingly simple environments.

The results of our main experiments (See Sections 4.5 and 4.6) confirmed this. Despite

the complex nature of the environment, the non-adaptive Traditional agent was able to

mimic, to a lesser degree, many of the results obtained by the adaptive-agents. This begs

the question, is there some way to measure the complexity of the modelling environment

Discussion 177

Figure 5.1: The suitability trade-off. As the number of systems in your ABM in-
creases, the use of adaptive-agents becomes more desirable. This is due to the increas-
ingly complex rule-based agents that would need to be constructed to account for the

interconnectedness of the model’s systems.

to determine whether using adaptive-mechanisms is worthwhile? If so, how? Considering

the limitations of this work, we argue that determining if adaptive-agents would be useful

(or required) when modelling a particular social system can, at best, be reduced to an

educated estimation. More specifically, we argue that as more (sub)systems are added

to a model, the benefits provided by adaptive-agents rises exponentially. This is due to

the increasingly complex rule-based agents that would need to be constructed to account

for the interconnectedness of said systems. At some point, this becomes an untenable

process outweighed by the scalability provided by adaptive-agents (See Figure 5.1).

Consider Axelrod’s cultural dissemination model [146]. It contains one system and, as

a result, has no need for adaptive-agents. In fact, using adaptive-agents in the model

does not make sense and would likely be detrimental. On the other hand, consider

NeoCOOP. It has eight (seven if you combine the vegetation model’s systems) distinct

subsystems that form the model’s social ecosystem. It is unsurprising then that the

simple Traditional agent could not fully capture the models dynamics but, the more

Discussion 178

Figure 5.2: An example of the proposed "Islands" Model. Here with have three
environments of decreasing size (increased resource stress). The environments are rep-
resented as a graph such that an agent in Environment 3 would first need to migrate

to Environment 2 before migrating to Environment 1.

complex adaptive-agents could. Although, this came at the cost of interpretability as

more work needed to be done in order to understand the model’s dynamics.

Future work with NeoCOOP should seek to simplify the model while maintaining the

benefits brought by the adaptive-agents. One such area pertains to the amount of data

required to get the simulation working. Archaeological data has the distinct disadvantage

of being naturally fragmented and, as a result, it was difficult to get the necessary data

for the model. As detailed in Section 4.1, we had to resort modern analogs to fill in

the gaps and the model’s results certainly suffered because of it. Implementing complex

systems often requires additional data. Data which you simply may not have access to.

Future versions NeoCOOP will need to directly address this issue by limiting its reliance

on external sources of data. It may be worthwhile to remove all of the Vegetation Model’s

systems completely and replace them with an alternative. One such avenue would be

adopting a more stylized environment design whereby the environment is divided into

separate grid-worlds of various sizes and environmental conditions. Using the example

of Egypt, two grid-worlds can be created, one large environment with an abundance

of resources representing the delta and one smaller environment with fewer resources

representing the rest of the valley. Using this "Islands" approach (See Figure 5.2),

the Households can evolve separately within these environments and, every so often,

agents may migrate from one "island" to the other. The size of the "island" inherently

facilities resource stress (the smaller the environment, the fewer resources it is capable of

producing) and, by connecting "islands" together in a graph representation, migration

dynamics may even be studied as well. This approach would completely remove the

need for GIS data and meets all of the constraints identified in Section 3.3.3. Subject

Discussion 179

to further investigation, this approach may facilitate the emergence of distinct cultural

identities in a simpler, easier to understand, model.

5.5 Summary

In this Chapter, we synthesized our findings from Chapters 3 and 4 and presented a

critical evaluation of the research questions presented in this work. First, we compared

the ML agents to their rule-based counterparts. Our results clearly showed that the

ML agents had greater adaptive capacity but, they are not without their limitations. In

particular, we identified that the objective optimization present in most ML algorithms

can result in the agents exploiting model simplicities which may result in unrealistic

model behaviour. Furthermore, we noted that the, sometimes arbitrary, nature in which

ML algorithm parameters are related to their real-world analogs can make translating

model results to reality difficult or even impossible.

We then highlighted the emergent phenomena produced by the agent-types. In addition

to increased settlement density and emergent inequality, the ML agents produced two

additional emergent phenomena in the form of cyclic population migration and resource

acquisition specialization. We claimed that this was evidence that ML agents have the

potential to produce emergent behaviour beyond that of their rule-based counterparts.

We discussed the implications our results have on understanding the formation of Ancient

Egypt during the Predynastic period. We noted that while our results do not support

or refute any theories related to the formation of the Ancient Egyptian state, our results

clearly demonstrate that the presence of the Nile and the desertification of the surround-

ing areas had a significant impact on the dynamics of that time period. Furthermore, we

identified that information throughput and agricultural production rate as potentially

significant factors in further understanding the dynamics of the Egyptian Predynastic.

The Chapter concluded with a discussion on the complexity of social simulations. We

showed that as systems are added to a model, the need for adaptive-agents increases

exponentially. We argued that this is attributed to the non-adaptive agents’ inability to

capture the dynamics of the model’s increasingly interconnected systems.

Chapter 6

Conclusions and Future Work

In this work we sought to investigate whether Machine Learning algorithms could be used

as adaptive mechanisms for Agent-based Models simulating the complex social phenom-

ena of ancient societies. We aimed to do this by comparing ML agents (Utility and IE),

developed using Reinforcement Learning and two Evolutionary Algorithms, to rule-based

agents (Traditional and RBAdaptive) typically found in contemporary literature.

In order to effectively evaluate these agent-types, a suitably complex environment was

needed. Ancient Egypt during the Predynastic Period was identified as this environment.

The motivation being that several natural and social factors (desertification [36] and

emergent social stratification [140] for example) are theorized to have played a role in

the ancient state’s formation. If the ML agents had greater adaptive capacity than the

rule-based agents, it would most certainly be identifiable in this context through their

ability to gather more surplus resources and maintain higher population levels [24, 38, 39].

In conducting scenario experimentation, we found that our ML agents performed better

or on par with even the complex rule-based agents given that they were able to maintain

higher population levels and comparable resource levels. When averaged across both

metrics, the IE agent-type was the most adaptive, the Utility and RBAdaptive agents

jointly ranked second and the Traditional agent ranked last.

Our results show that when placed into a sufficiently complex environment, the use of

adaptive, learning, agents is more desirable than that of their rule-based counterparts.

More specifically, our results show that when applying Agent-based Modelling to the

study of ancient societies, adaptive-agents should be used because they are able to resist,

180

181

recover and modify themselves to a variety of environmental perturbations and initial

parameter distributions in addition to their ability to produce emergent phenomena (such

as strategy specialization) that their rule-based counterparts cannot.

6.1 Future Work

Future research efforts will directly tackle the limitations of this work. Namely, effort

will be made improve the realism of the emergent phenomena of the ML agents. This

will be done by critically evaluating the objective functions they use to make decisions.

Additionally, NeoCOOP will be amended with the changes discussed in Section 5.4.

Work will also be done to support our findings by applying NeoCOOP to simulating the

formation of different ancient societies. If ML agents are truly more adaptive than rule-

based agents, our results should hold up in similarly complex modelling environments.

Secondly, work will done on ECAgent (the modelling framework introduced in Section

3.1) to ensure it is more feature complete as well as an attractive prospect to those

searching for a framework to develop ABM with.

Lastly, we will investigate the concepts of agricultural production rate and knowledge

monopolization further. Specifically, the effects these two concepts have on the dynamics

of the model’s results will be studied as we attempt to further understand the complex

social phenomena that underpinned the formation of Ancient Egypt during the Predy-

nastic Period.

Appendix A

ODD+D Description

A.1 Overview

A.1.1 Purpose

A.1.1.1 What is the purpose of the study?

The general purpose of NeoCOOP is to be a model by which we can simulate the

Paleolithic-Neolithic transitionary period that saw humanity move from largely egali-

tarian hunter gatherer groups to agrarian super polities typically ruled by a social elite.

In this work, we use NeoCOOP to study the formation of Ancient Egypt during the

Predynastic Egypt.

A.1.1.2 For whom is the model designed?

This model is designed primarily for Computational Archaeologists. The model will also

be of interest to Computational Social Scientists modelling complex social phenomena

and the Artificial Life (ALIFE) community in general.

182

ODD+D Description 183

A.1.2 Entities, State Variables and Scales

A.1.2.1 What kinds of entities are in the model?

There are four kinds of entities within NeoCOOP:

1. Households: They are the primary decision making entity in NeoCOOP (the

agents). They represent a collection of occupants ruled by a patriarchal figure.

2. Occupants: Occupants are contained within households. They are not decision

making entities and are only present to determine household resource gathering

and consumption levels.

3. Settlements: Settlements represent a collection of households. They are also

not decision making entities but are used by several of the model’s systems for

simulating / restricting agent adaptation.

The model represents its environment as a n × m grid-world. Each cell in the grid

can technically be thought of as an entity but, their primary purpose is to store local

geographical information.

A.1.2.2 By what attributes(i.e. state variables and parameters) are these

entities characterized?

See Sections 3.4.1 and 3.4.2.

A.1.2.3 What are the exogenous factors/drivers of the model?

Climate Change. Specifically an increasing or decreasing likelihood of drought over time.

A.1.2.4 If applicable, how is space included in the model?

The environment is a grid-world made up of equally sized cells. NeoCOOP supports

using GIS layers to add environmental information to the environment. This includes

but, is not limited to, height, slope, water and sand content data inputted into the model

ODD+D Description 184

as images where each pixel in the image represents the value of a given attribute at that

pixel coordinate in the grid-world.

A.1.2.5 What are the temporal and spacial resolutions and extents of the

model?

One iteration in NeoCOOP represents a single year.

The size of each grid cell is configurable. In this study, each cell is 1km2 in size and the

total size of the grid-world is determined by the height and width parameters.

A.1.3 Process Overview and Scheduling

A.1.3.1 What entity does what and in what order?

The order of execution can be seen in Figure 3.20.

A.2 Design Concepts

A.2.1 Theoretical and Empirical Background

A.2.1.1 Which general theories concepts, theories or hypotheses are under-

lying the model’s design or at the level(s) of the submodel(s) (apart

from the decision model)? What is the link to complexity and pur-

pose of the model?

The model heavily relies on the vegetation model description by Xu et al. [150]. We

simplified their process for NeoCOOP by only looking at growth penalties associated

with determining NPP.

The Agent-based component of the model is also loosely based on the work of Chliaoutakis

and Chalkiadakis [25, 40] and the model makes use of their self-organization scheme for

simulating emergent social hierarchies.

Our Agent’s resource trading preferences are probability-based. This is an extension to

the typically simple cooperative - defective approach. Each agent has a probability p

ODD+D Description 185

associated with its resource trading preferences and every time a resource trading request

needs to be decided on, a random number is generated ∈ [0, 1] and the number is less

than p, the resource transfer request is granted.

A.2.1.2 On what assumption is/are agents’ decision model(s) based?

The model assumes that resource trading preferences can be simulated as a stochastic

process. Additionally, it assumes that all households were ’ruled’ by a single individual

and that personal storage is the preferred method of resource storing (as opposed to

collective resource pooling or some other hybrid approach).

A.2.1.3 Why is a/are certain decision model(s) chosen?

Most of the model’s input parameters are based on published works or publicly available

data. Table B.1 provides said references and where no references are made, NeoCOOP

is tuned using Optuna.

Optuna performs multi-objective optimization maximizing total population and resources

levels in the last iteration. These measures are used because a greater population level

is indicative of a more successful parameter configuration and we also consider total

resources because having a higher population level with more resources is a greater

indicator of success than an equally large population with no resources.

A.2.1.4 If the model/ a submodel is based on empirical data, where does

that data come from?

See Table B.1.

A.2.1.5 At which level of aggregation were the data available?

It varies from source to source. Table B.1 clarifies how the data was derived.

ODD+D Description 186

A.2.2 Individual Decision Making

A.2.2.1 What are the subjects and objects of decision-making? On which

level of aggregation is decision-making modelled? Are multiple lev-

els of decision making included?

The decision making units are Households represented as one of the four agent-types

discussed in Section 3.4.2.

Every iteration, agents choose to FARM or FORAGE actions equal to the number of able

workers (An able worker is an agent who is older than or equal the agent_of_maturity

property. Agents are restricted to choosing one action or the other, in fact, agents may

choose to have some of their occupants farm, and the rest will forage.

A.2.2.2 What is the basic rationality behind agents’ decision-making? Do

agents pursue an explicit objective or have other success criteria?

This varies depending the agent-type. The Traditional agents simply follow a linear

adoption curve. The RBAdaptive agents use PMT and the ML agents (Utility and IE)

explicitly perform Utility maximization, implicitly trying to minimize their hunger and

maximizing their social status.

A.2.2.3 How do agents make their decisions?

See Sections 3.4.2, 3.4.3.4, 3.4.3.5, and 3.4.3.7.

A.2.2.4 Do the agents adapt their behaviour to changing endogenous and

exogenous state variables? And if yes, how?

Yes, agents will seek to explore alternative resource acquisition strategies when their

current strategy does not work. Similarly, agents will move from one settlement to

another when their overall satisfaction is low.

ODD+D Description 187

A.2.2.5 Do social norms or cultural values play a role in the decision making

process?

Yes, if multiple agents decide to leave a settlement in the same iteration, they will all

move to the same location.

A.2.2.6 Do spacial aspects play a role in the decision making process?

Yes, agents can only farm / forage within a specified max acquisition distance. Similarly,

the distance an agent can travel when moving from one settlement to another can be

controlled by the vision_square property.

A.2.2.7 Do temporal aspects play a role in the decision making process?

Yes, agents only decide whether or not to move every yrs_per_move iterations.

A.2.2.8 To which extent and how is uncertainty included in the agents’

decision rules?

Not Applicable.

A.2.3 Learning

A.2.3.1 Is individual learning included in the decision process? How do

agents’ change their rules over time as consequence of their experi-

ence?

Yes, the ML agents follow a standard reinforcement learning approach to determine

which action (farm or forage) to take. The RBAdaptive agent uses PMT to adapt to its

environments.

ODD+D Description 188

A.2.3.2 Is collective learning implemented in the model?

Yes, in the form of generational adaptation. The ML Agents use a genetic algorithm and

a cultural algorithm to exchange information regarding their beliefs and RBAdaptive

agents use collective learning in the rule-based adaption system (See Section 3.4.3.9).

A.2.4 Individual Sensing

A.2.4.1 What endogenous and exogenous state variables are individuals as-

sumed to sense and consider in their decisions? Is their sensing

process erroneous?

It is not erroneous and the agents don’t explicitly detect any of the environment’s prop-

erties. Agents are aware of their hunger, satisfaction and the ML agents are aware of

their perceived utility of the forage and farm actions.

A.2.4.2 What state variables of which other individuals can an individual

perceive? Is the sensing process erroneous?

Agents are aware of the average resource levels of the neighbouring settlements. They

are indirectly aware of the general beliefs held by their settlement (captured in their

belief space).

A.2.4.3 What is the spatial scale of sensing?

When moving, agents are able to sense the vegetation density and cells they own within

max acquisition distance cells around them.

A.2.4.4 Are the mechanisms by which agents obtain information modelled

explicitly, or are individuals simply assumed to know these vari-

ables?

It is assumed.

ODD+D Description 189

A.2.4.5 Are costs for cognition and costs for gathering information included

in the model?

Not explicitly.

A.2.5 Individual Prediction

Agents do not make any explicit predictions.

A.2.6 Interaction

A.2.6.1 Are interactions among agents and entities assumed as direct or

indirect?

Cultural Influence occurs indirectly while resource transfer is direct.

A.2.6.2 On what do the interactions depend?

Resource transfer requires that agents belong to the same settlement. Cultural Influence

depends on the social status of the two ’interacting’ agents.

A.2.6.3 If the interactions involve communication, how are such communi-

cations represented?

Not Applicable.

A.2.6.4 If a coordination network exists, how does it affect the agent be-

haviour? Is the structure of the network imposed or emergent?

Not Applicable.

ODD+D Description 190

A.2.7 Collectives

A.2.7.1 Do the individuals form or belong to aggregations that affect and

are affected by the individuals? Are these aggregations imposed by

the modeller or do they emerge during the simulation?

Yes. As mentioned above agents are may form settlements. The simulation does not

enforce settlements (except at initialization). Agents may form new settlements, leave

old ones or even move to other settlements every yrs_per_move iterations. An agent

always needs to belong to a settlement (so that the adaptation systems can work) but

it is entirely possible that a simulation run may result in every agent forming their own

settlement. This is equivalent to having no settlements since each household will adapt

individually.

A.2.7.2 How are collectives represented?

A collection of one or more households makes a settlement.

A.2.8 Heterogeneity

A.2.8.1 Are the agents heterogeneous? If yes, which state variables and/or

processes differ between the agents?

Yes. All variables listed in Section 3.4.2.

A.2.8.2 Are the agents heterogeneous in their decision-making? If yes,

which decision models or decision objects differ between the agents?

Yes. All agent decisions are heterogeneous. This includes resource acquisition, resource

transfer and relocation.

ODD+D Description 191

A.2.9 Stochasticity

A.2.9.1 What processes (including initialisation) are modelled by assuming

they are random or partly random?

All stochastic processes are pseudorandom. This is to ensure model reproducibility. A

list of stochastic processes during model execution are listed below:

1. Global Environment values (rainfall, temperature and solar radiation).

2. ML Agent explorative action selection (e-greedy).

3. Rule-based agent resource acquisition action selection.

4. Agent farm / forage resource gathering patch selection.

5. Household birth.

6. Household death.

7. Resource Transfer Requests.

8. House Split Parent Selection (Genetic Algorithm)

9. Household Split Mutation (Genetic Algorithm).

10. Household Influence knowledge source selection (Cultural Algorithm)

11. Household Move decision.

A list of stochastic processes at initialization are listed below:

1. Settlement placement.

2. ML Agent initial gene creation.

3. Agent settlement placement.

ODD+D Description 192

A.2.10 Observation

A.2.10.1 What data are collected from the ABM for testing, understanding

and analysing it, and how and when are they collected?

Snapshots of the model are collected every (user-defined) iterations. These snapshots

capture all of the necessary aspects for, essentially, recreating the simulation run from

the ground up.

All environment data is collected in csv files. All agent and settlement data is collected

in JSON files. A log file of the simulation is also recorded which records the result of

every stochastic process the model simulates.

A.2.10.2 What key results, outputs or characteristics of the model are emerg-

ing from the individuals? (Emergence)

This is heavily reliant on the input parameters of the model but the key emergent prop-

erties are discussed in Section 4.6 and Gower-Winter and Nitschke [41–43].

A.3 Details

A.3.1 Implementation Details

A.3.1.1 How has the model been implemented?

The model was implemented in Python 3 using the ECAgent framework.

A.3.1.2 Is the model accessible, and if so where?

Yes, it is publicly available at: https://github.com/BrandonGower-Winter/NeoCOOP.

https://github.com/BrandonGower-Winter/NeoCOOP

ODD+D Description 193

A.3.2 Initialization

A.3.2.1 What is the initial state of the model world, i.e. at time t = 0 of a

simulation run?

Agents have been randomly allocated to settlements. Settlements have been randomly

placed. All agents have zero resources and zero load. The rest of the initial conditions

are based on the decoder file used to create the simulation.

A.3.2.2 Is the initialisation always the same, or is it allowed to vary among

simulations?

It varies depending on the seed used. If the same seed is used, the initialization (and

model execution) will be exactly the same.

A.3.2.3 Are the initial values chosen arbitrarily or based on data?

Randomly. If agent homogeneity is enforced, the model will not randomly assign agents

to each settlement (all settlements will be given the same number of starting agents) but

the settlement locations will still be random.

A.3.3 Input Data

A.3.3.1 Does the model use input from external sources such as data files

or other models to represent processes that change over time?

Yes. NeoCOOP uses what we call decoder files. They share the same structure as table

B.1 (in JSON format) and are given to the model at initialization. The model also takes

in a heightmap, sandcontant map and slopemap (usually derived from the heightmap)

and optional floodmap.

ODD+D Description 194

A.3.4 Submodels

A.3.4.1 What, in detail, are the submodels that represent the processes

listed in ‘Process overview and scheduling’?

See Section 3.4.3. Additionally, a visualization of the model’s output has been shown in

Figure A.1.

A.3.4.2 What are the model parameters, their dimensions and reference

values?

See Table B.1.

A.3.4.3 How were the submodels designed or chosen, and how were they

parameterised and then tested?

See Section 4.4. Final input parameters for our model can be seen in Table B.1. A report

of the optimization process is outlined in Appendix B.

ODD+D Description 195

Figure A.1: A visualization of the final results produced by a typical simulation run.
Black pixels indicate settlements or farmland.

Appendix B

Parameter Tuning and Model

Analysis

B.1 Code Coverage and Validation

Unit testing was performed on both the ECAgent framework and NeoCOOP model to

validate code implementations. We used the package pytest to conduct the unit testing

and pytest-cov was used to ensure that code coverage of the unit tests was sufficient.

Below is the raw output of the code coverage report for both ECAgent and NeoCOOP.

ECAgent:

Name Stmts Miss Cover

--

ECAgent/Collectors.py 51 0 100%

ECAgent/Core.py 152 9 94%

ECAgent/Decode.py 59 1 98%

ECAgent/Environments.py 147 0 100%

ECAgent/Visualization.py 126 94 25%

ECAgent/__init__.py 0 0 100%

--

TOTAL 535 104 81%

196

Parameter Tuning and Model Analysis 197

Note that the poor code coverage of ECAgent.Visualization is due to the UI-based nature

of the package.

NeoCOOP:

Name Stmts Miss Cover

--

NeoCOOP/Agents.py 223 34 84%

NeoCOOP/VegetationModel.py 146 7 95%

NeoCOOP/NeoCOOP.py 32 0 100%

NeoCOOP/Visualization.py 17 0 100%

--

TOTAL 418 41 90%

Note that the several individual scripts were summarized under the model’s major com-

ponents and the results have been adjusted to reflect only code that could be unit tested.

B.2 Optuna

NeoCOOP is parameter tuned using multi-objective optimization in Optuna. This pro-

cess seeks to find a parameter set that maximizes the model’s final population and re-

sources levels. The motivation for this is because a higher population level is indicative

of a more resilient agent and because resources are essential to their survival. Agents

who are able to maintain a higher degree of surplus resources are more successful than

agents that have less. Note that we do not care about the distribution of the resources

per agent and only consider mean surplus resources across all agents. This is to ensure

that we do not favour one type of organizational scheme over another (Authoritarian vs.

Egalitarian)

The optimization process was as follows: For each agent-type, 50 simulations were run

(excluding the RBAdaptive agent-type which uses from the OMOLAND [147] model)

and the final pareto optimal parameter combinations were recorded. This can all be

replicated using the OptunaRunner.py script included with the source code). The final

outputs from this process are included below:

Parameter Tuning and Model Analysis 198

Traditional:

Pareto Optimal Solutions:

{’forage_grad’: 0.27371, ’forage_offset’: 0.0685242}

{’forage_grad’: 0.944704, ’forage_offset’: 0.0999721}

{’forage_grad’: 0.299912, ’forage_offset’: 0.388338}

{’forage_grad’: 0.905317, ’forage_offset’: 0.441458}

{’forage_grad’: 0.808227, ’forage_offset’: 0.107181}

{’forage_grad’: 0.88712, ’forage_offset’: 0.273298}

Final Solution:

{’forage_grad’: 0.6864983333333333, ’forage_offset’: 0.2297952166666667}

Utility:

Pareto Optimal Solutions:

{’learning_rate_lower’: 0.099245, ’learning_rate_upper’: 0.463606}

{’learning_rate_lower’: 0.521943, ’learning_rate_upper’: 0.528274}

{’learning_rate_lower’: 0.285754, ’learning_rate_upper’: 0.471596}

{’learning_rate_lower’: 0.72279, ’learning_rate_upper’: 0.784563}

{’learning_rate_lower’: 0.473312, ’learning_rate_upper’: 0.55982}

{’learning_rate_lower’: 0.67954, ’learning_rate_upper’: 0.688166}

{’learning_rate_lower’: 0.123563, ’learning_rate_upper’: 0.578573}

Final Solution:

{’learning_rate_lower’: 0.41516385714285714,

’learning_rate_upper’: 0.5820854285714285}

IE:

Pareto Optimal Solutions:

{’influence_frequency’: 17, ’influence_rate’: 0.96187,

’mutation_rate’: 0.13745, ’learning_rate_lower’: 0.410563,

’learning_rate_upper’: 0.644966}

{’influence_frequency’: 46, ’influence_rate’: 0.561638,

Parameter Tuning and Model Analysis 199

’mutation_rate’: 0.111579, ’learning_rate_lower’: 0.00935602,

’learning_rate_upper’: 0.605442}

{’influence_frequency’: 14, ’influence_rate’: 0.977973,

’mutation_rate’: 0.199105, ’learning_rate_lower’: 0.49406,

’learning_rate_upper’: 0.846665}

Average Results:

{’influence_frequency’: 25.666666666666668, ’influence_rate’: 0.833827,

’mutation_rate’: 0.149378, ’learning_rate_lower’: 0.3046596733333333,

’learning_rate_upper’: 0.6990243333333334}

B.3 Model Parameters

See Tables 4.1 and B.1.

Parameter Tuning and Model Analysis 200

NeoCOOP
Property Value Reference

Model Parameters
Iterations 2500

map_height 750
map_width 300
offset_x 0
offset_y 0

max_height 1400m
min_height 0m

cell_dimensions 1000m This makes the area of a single cell = 1km2

Global Environment System
Priority 10

start_rainfall [32,42]mm Midpoint of Semi-Arid yearly rainfall [168]
end_rainfall [0,10]mm This range represents a range of drought rain conditions. Based on [169].

start_temperature [26,32] ◦C Arbitrary range to minimize Temperature penalties.
end_temperature [26,32] ◦C Same as above.

start_flood [12.0, 21.0] m Derived from [162] and pre-processed heightmap
end_solar [0.0, 12.0] m Same as above.
soil_depth 1000mm

interpolator_range 2500 Note: Must be equal to the number of iterations.
temperature_interpolator linear

rainfall_interpolator cosine Set the frequency equal to 250 derived from [162].
flood_interpolator cosine Same as above.

Soil Moisture System
Priority 9 These values are arbitrary and represent a generic semi-arid climate.

L 9.5 hrs
N 30 days
I 86.5 ◦C

Vegetation Growth System
Priority 7

Agent Resource Acquisition System
Priority 8

farmers_per_patch 1
max_acquisition_distance 20
farming_production_rate 4.0 See Section 4.1.
foraging_production_rate 1.0 See Section 4.1.

storage_yrs -1 This means quantity-based storage decay is disabled.
Agent Resource Transfer System

Priority 6
load_decay 0.0 This means it is disabled.

Agent Resource Consumption System
Priority 5

Agent Population System
Priority 4

birth_rate 0.1% Derived from [36]
death_rate 0.01% Derived from [36]

yrs_per_move 5 iterations . [25]
init_settlements 537 See Section 4.1
cell_capacity 100

Agents
number 100

age_of_maturity 0 This means it is disabled.
consumption_rate 1.0

child_factor 0.0 This means it is disabled.
init_occupants 1
vision_square 2500
move_lookback 3
load_difference 0.6 [25]

Table B.1: A list of NeoCOOP ’s properties. Note that specialized agent-type prop-
erties are described in Section 4.4.

Appendix C

GIS Data Preprocessing

In this Chapter, we describe how the GIS data-maps used in our experiments were cre-

ated. Section C.1 describes how the heightmap was generated. Section C.2 describes how

the slopmap was generated using the heightmap. Section C.3 describes how the floodmap

was generated and Section C.4 describes how the soil texture maps were created.

Note: Several scripts will be mention in this Chapter. All of them are available for

download in the NeoCOOP code repository (See Chapter 3).

C.1 Height Map

The heightmap data was sourced from the ALOS Global Digital Surface Model [158].

The process for converting the raw AWD30 data to a single PNG was as follows:

1. Download the AWD30 DSM TIFF files from the AWD30 website available at:

https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/aw3d30_e.htm

2. Use the ALOS provided aw3d2srtm shell script to convert the DSM files SRTM

Data files aliased with the hgt and hgt.aux extensions.

3. Convert the hgt files into PNGs using the HGT_TO_PNG.py script.

4. Stitch the PNGs together using the PNG_stitcher.py script.

5. Manually downscale the image to the appropriate image size (750 by 300 pixels in

our case).

201

https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/aw3d30_e.htm

GIS Data Preprocessing 202

Algorithm 19: Pseudocode for generating slopemap data using heightmap data.
Here cellsize refers to the distance between orthogonal cells calculated using the scale
of the heightmap.

1 def get_slope_data(heightmap : array of size (Y,X)):
2 slopemap = array of size (Y,X) for y in Y do
3 for x in X do
4 maxslope = 0.0 for i in range(-1, 2) do
5 xPos = x + i if 0 < xPos < X then
6 for j in range(-1, 2) do
7 yPos = y + j if 0 < yPos < Y then
8 newslope = degrees(arctan(abs(heightmap[xPos][yPos] -

heightmap[x][y]) / cellsize)
9 maxslope = max(maxslope, newslope)

10 end
11 end
12 slopemap[y][x] = maxslope
13 end
14 end
15 return slopemap

C.2 Slope Map

The slopemap data requires that the heightmap data (Section C.1) has been generated

already. The process for generating the slopemap is as simple as using the heightmap_

slopemap_converter.py script. The process used by the script is described in Algorithm

19.

C.3 Flood Map

The floodmap data requires that the heightmap data (Section C.1) has been gener-

ated already. The process for generating the floodmap only requires that the using the

flood_mapper.py script be used. The process used by the script can be thought of as a

flood-fill algorithm that recursively calculates the minimum required height a given cell

needs in order to be considered "flooded" on a given iteration. This process expands

outwards from cells that have been marked as "water" cells. The result of this process

can be seen in Figure C.1a. Given the extreme changes in height on the terrain, the final

result can be hard to understand. The generated image also needs to stay at the same

scale as the heightmap. Water sources tend to be at lower points in localized terrain

areas, thus most of the pixels appear to be visual indiscernible shades of black. Figure

GIS Data Preprocessing 203

(a) (b)

Figure C.1: Figures showcasing the generated floodmap (a) and the result of using the
floodmap to generate environment resources (b). Figure (a) is supposed to be mostly
black (See Section C.3). In Figure (b), darker pixels indicate resource abundance and

lighter cells indicate resource scarcity.

C.1b shows the accuracy of this approach by simulating the expected resource density.

As can be seen, most of the Nile Valley and Delta are correctly resource dense and the

surrounding areas resource scarce. It should be noted that this process is not perfect.

Figure C.1b does have artefacts and a separate "is water" mask must be used to ensure

that sea water does not contribute to resource abundance.

C.4 Soil Texture Maps

The soil-clay content maps were sourced from the GLDAS project [159]. The process for

doing so was as follows:

1. Download the GLDAS Soil Land Surface data as netcdf files from: https://ldas.

gsfc.nasa.gov/gldas/soils.

https://ldas.gsfc.nasa.gov/gldas/soils
https://ldas.gsfc.nasa.gov/gldas/soils

GIS Data Preprocessing 204

2. Convert the netcdf files to geotiffs using the GLDAS_TO_GEOTIFF.py script.

3. Manually convert the Sand and Clay GEOTIFFS into PNGS.

4. Manually downscale the image to the appropriate image size (750 by 300 pixels in

our case).

Appendix D

Supplementary Experiments

In this Chapter, we summarize the preliminary experiments we ran to further understand

the dynamics of NeoCOOP early on in its development. Section D.1 describes how we

designed the experiments and Section D.2 reports our findings.

D.1 Experiment Design

One of the main challenges we encountered during development pertained to the mech-

anism(s) we were going use to simulate global environment data. As noted in Section

4.2, data from the Predynastic period does not exist and an alternative would need to

be found. The approach we took was partly inspired by work by Molin et al. [24] and

the Food-for-All model [157]. These authors generated their "climate data" using func-

tions and thresholds respectively. We decided to blend these two approaches together as

described in Section 4.2. The final part of this process required us to choose an appropri-

ate interpolator function s. Four such functions were identified and described as follows:

Linear (Equation D.1), Sinusoid (Equation D.3), Dampended Sinusoid (Equation D.2)

and Linear Dampened Sinusoid (Equation D.4) where t is the timestep, T is the denom-

inator for the linear function, f is the frequency for the sinusoids, k is an exponential

constant and m is the gradient.

s1(t) =
t

T
(D.1)

s3(t) = s2(t)× e−kt (D.2)

s2(t) = 0.5 + 0.5sin(
2π × t
f

) (D.3)

s4(t) = s3(t) + (m(1− t)(1− s3(t))) (D.4)

205

Supplementary Experiments 206

The motivation for choosing these functions pertained to the cyclic nature of dry and

wet seasons [162] simulated by the sinusoids and the generally increasing arid conditions

simulated by the linear components of Equations D.1 and D.4. We conducted scenario

experimentation under the same conditions of our main experiments (50 repetitions for

each agent for each scenario resulting in 800 simulation runs).

Note: The model’s parameters had not been finalized (we were still using Households

with individuals and stylized data-maps as opposed to the satellite GIS data used in our

final experiments for example). Additionally, the simulation length was only 2000 itera-

tions instead of the 2500 iterations we settled for in our main experiments. Similarly, the

agents had not been parameter tuned completely so we could not make concrete claims

about the adaptive capacity of the agent-types. The main purpose of these experiments

was to ascertain which interpolator would be worth using and to identify if there were

glaring issues with the agent implementations.

D.2 Results and Discussion

Figure D.1 plots the final Individual population level for the scenarios explored. For the

most part, all scenarios investigated were capable of generating sufficient environmental

stress that would result in population loss and adaptation. Surprisingly, the ML agents

were able to maintain similar population levels regardless of the scenario. We initially

believed this may have been luck due to our domain knowledge of the algorithms used

as their adaptive mechanisms but, after conducting our main experiments, we now know

that this is because the ML agents are able to optimize themselves to a variety of scenarios

across a range of parameter values. Conversely, the RBAdaptive agent was the poorest

performer across all scenarios which is what prompted us to scale the input parameters

of the agent-type from its original OMOLAND model implementation.

Interestingly, the rule-based agent-types seemingly caught the ML agents in their final

population levels towards the end of the simulation runs. Further investigation revealed

that this was due to the rule-based agents exploiting the resource protection offered by

Nile Delta. In fact, some experiments had 95% of the rule-based agents situated in the

Delta. This result was almost entirely the result of using stylized data-maps as, when

we used the satellite GIS data, this behaviour all but disappeared.

Supplementary Experiments 207

(a) Linear (b) Sinusoid

(c) Dampened Sinusoid (d) Linear Dampened Sinusoid

Figure D.1: Final Individual population levels for the exploratory experiments.

In the end, we opted to use the sinusoid for our final experiments. The motivations

were three-fold. First, sinusoids were used by Molin et al. [24] so there was already a

precedence set. Similarly, our results showed that all functions could induce population-

based stress so there was no reason to against the status-quo. Lastly, Hassan [162]

described the Nile floods as seasonal (behaviour captured by the sinusoid interpolator).

Yes there was likely to have been a gradual change towards more arid conditions which

the linear function could capture but, it is not as if Egypt was a tropical paradise before

the Neolithic. During the time period we were interested in modelling, Egypt was always

semi or extremely arid.

Bibliography

[1] Iza Romanowska. So you think you can model? a guide to building and evaluat-

ing archaeological simulation models of dispersals. Human biology, 87(3):169–192,

2015.

[2] Bernd Schmidt. The modelling of human behaviour: The PECS reference models.

SCS-Europe BVBA Delft, 2000.

[3] Christoph Urban and Bernd Schmidt. Pecs–agent-based modelling of human

behaviour. In Emotional and Intelligent–The Tangled Knot of Social Cogni-

tion, AAAI Fall Symposium Series, North Falmouth, MA. www. or. unipassau.

de/5/publik/urban/CUrban01. pdf, 2001.

[4] William Rand. Machine learning meets agent-based modeling: when not to go to

a bar. In Conference on Social Agents: Results and Prospects, 2006.

[5] Robert G Reynolds, Mostafa Ali, and Thaer Jayyousi. Mining the social fabric of

archaic urban centers with cultural algorithms. Computer, 41(1):64–72, 2008.

[6] Lars I Hatledal, Yingguang Chu, Arne Styve, and Houxiang Zhang. Vico: An

entity-component-system based co-simulation framework. Simulation Modelling

Practice and Theory, 108:102243, 2021.

[7] Eric Tatara, M North, T Howe, N Collier, Jerry Vos, et al. An introduction to

repast simphony modeling using a simple predator-prey example. In Proceedings of

the Agent 2006 Conference on Social Agents: Results and Prospects, pages 83–93.

Argonne National Laboratory and The University of Chicago, 2006.

[8] Alice Stevenson. The egyptian predynastic and state formation. Journal of Ar-

chaeological Research, 24(4):421–468, 2016.

208

Bibliography 209

[9] William G Kennedy. Modelling human behaviour in agent-based models. In Agent-

based models of geographical systems, pages 167–179. Springer, 2012.

[10] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.

MIT press, 2018.

[11] Douglas James Brewer and Emily Teeter. Egypt and the Egyptians. Cambridge

University Press, 1999.

[12] Branislav Anđelković. Political organization of egypt in the predynastic period.

Before the Pyramids: The Origins of Egyptian Civilization, ed. Emily Teeter, pages

25–32, 2011.

[13] Charles M Macal. Everything you need to know about agent-based modelling and

simulation. Journal of Simulation, 10(2):144–156, 2016.

[14] Mark Pogson, Rod Smallwood, Eva Qwarnstrom, and Mike Holcombe. Formal

agent-based modelling of intracellular chemical interactions. Biosystems, 85(1):

37–45, 2006.

[15] Enrique Frias-Martinez, Graham Williamson, and Vanessa Frias-Martinez. An

agent-based model of epidemic spread using human mobility and social network

information. In 2011 IEEE third international conference on privacy, security, risk

and trust and 2011 IEEE third international conference on social computing, pages

57–64. IEEE, 2011.

[16] Eric Bonabeau. Agent-based modeling: Methods and techniques for simulating

human systems. Proceedings of the national academy of sciences, 99(suppl 3):

7280–7287, 2002.

[17] Gary Bogle and Claudio Cioffi-Revilla. Zambeziland: A canonical theory and

agent-based model of polity cycling in the zambezi plateau, southern africa. In

Simulating prehistoric and ancient worlds, pages 359–375. Springer, 2016.

[18] Mark W Lake. Magical computer simulation of mesolithic foraging. Dynamics in

human and primate societies: agent-based modelling of social and spatial processes,

pages 107–143, 2000.

Bibliography 210

[19] Shawn Graham and Scott Weingart. The equifinality of archaeological networks:

an agent-based exploratory lab approach. Journal of Archaeological Method and

Theory, 22(1):248–274, 2015.

[20] Wendy H Cegielski and J Daniel Rogers. Rethinking the role of agent-based mod-

eling in archaeology. Journal of Anthropological Archaeology, 41:283–298, 2016.

[21] Helen Couclelis. Modeling frameworks, paradigms, and approaches. Geographic

information systems and environmental modeling, pages 36–50, 2002.

[22] Hazel R Parry and Mike Bithell. Large scale agent-based modelling: A review and

guidelines for model scaling. In Agent-based models of geographical systems, pages

271–308. Springer, 2012.

[23] Erik Cuevas. An agent-based model to evaluate the covid-19 transmission risks in

facilities. Computers in biology and medicine, 121:103827, 2020.

[24] Lara Dal Molin, Jasmeen Kanwal, and Christopher Stone. Resource availability

and the evolution of cooperation in a 3d agent-based simulation. In Proceedings of

the Genetic and Evolutionary Computation Conference, pages 93–101, 2021.

[25] Angelos Chliaoutakis and Georgios Chalkiadakis. Agent-based modeling of ancient

societies and their organization structure. Autonomous Agents and Multi-Agent

Systems, 30(6):1072–1116, 2016.

[26] David J Buller. Adapting minds: Evolutionary psychology and the persistent quest

for human nature. MIT press, 2006.

[27] Ethem Alpaydin. Introduction to machine learning. MIT press, 2020.

[28] Michael W Macy and John Skvoretz. The evolution of trust and cooperation

between strangers: A computational model. American Sociological Review, pages

638–660, 1998.

[29] Michel Jules Dreyfus-León. Individual-based modelling of fishermen search be-

haviour with neural networks and reinforcement learning. Ecological Modelling,

120(2-3):287–297, 1999.

[30] Forrest Stonedahl and Uri Wilensky. Finding forms of flocking: Evolutionary search

in abm parameter-spaces. In International workshop on multi-agent systems and

agent-based simulation, pages 61–75. Springer, 2010.

Bibliography 211

[31] Fang Yuan Xu, Xue Wang, Loi Lei Lai, and Chun Sing Lai. Agent-based modeling

and neural network for residential customer demand response. In 2013 IEEE Inter-

national Conference on Systems, Man, and Cybernetics, pages 1312–1316. IEEE,

2013.

[32] Cornelis J Drost and Marc Vander Linden. Toy story: Homophily, transmission and

the use of simple simulation models for assessing variability in the archaeological

record. Journal of Archaeological Method and Theory, 25(4):1087–1108, 2018.

[33] Lukas Egli, Hanna Weise, Viktoriia Radchuk, Ralf Seppelt, and Volker Grimm.

Exploring resilience with agent-based models: state of the art, knowledge gaps and

recommendations for coping with multidimensionality. Ecological Complexity, 40:

100718, 2019.

[34] Gary Bogle. Polity Cycling in Great Zimbabwe via Agent-Based Modeling: The

Effects of Timing and Magnitude of External Factors. PhD thesis, George Mason

University, 2019.

[35] Lynne M Rouse and Lloyd Weeks. Specialization and social inequality in bronze

age se arabia: analyzing the development of production strategies and economic

networks using agent-based modeling. Journal of Archaeological Science, 38(7):

1583–1590, 2011.

[36] Robert C Allen. Agriculture and the origins of the state in ancient egypt. Explo-

rations in Economic History, 34(2):135–154, 1997.

[37] Nathan L Engle. Adaptive capacity and its assessment. Global environmental

change, 21(2):647–656, 2011.

[38] Scott Heckbert. Mayasim: an agent-based model of the ancient maya social-

ecological system. Journal of Artificial Societies and Social Simulation, 16(4):

11, 2013.

[39] Maja Schlüter and Claudia Pahl-Wostl. Mechanisms of resilience in common-pool

resource management systems: an agent-based model of water use in a river basin.

Ecology and Society, 12(2), 2007.

Bibliography 212

[40] Angelos Chliaoutakis, Georgios Chalkiadakis, et al. An agent-based model for

simulating inter-settlement trade in past societies. Journal of Artificial Societies

and Social Simulation, 23(3):1–10, 2020.

[41] Brandon Gower-Winter and Geoff Nitschke. Do harsher environments cause self-

ish or altruistic behavior? In Genetic and Evolutionary Computation Conference

Companion (GECCO ’22 Companion)), July 2022.

[42] Brandon Gower-Winter and Geoff Nitschke. Societies prefer the middle-ground

between selfishness and cooperation. In 4th International Workshop on Agent-

Based Modelling of Human Behaviour (ABMHuB’22), 2022.

[43] Brandon Gower-Winter and Geoff Nitschke. Extreme environments perpetuate

cooperation. In IEEE Symposium Series On Computational Intelligence (SSCI’22),

2022.

[44] Simon Levin. Complex adaptive systems: exploring the known, the unknown and

the unknowable. Bulletin of the American Mathematical Society, 40(1):3–19, 2003.

[45] Andrew T Crooks and Alison J Heppenstall. Introduction to agent-based mod-

elling. In Agent-based models of geographical systems, pages 85–105. Springer, 2012.

[46] Joshua M Epstein and Robert Axtell. Growing artificial societies: social science

from the bottom up. Brookings Institution Press, 1996.

[47] Nigel Gilbert. Agent-based models, volume 153. Sage Publications, Incorporated,

2019.

[48] Margaret A Boden. Computer models of mind: Computational approaches in the-

oretical psychology. Cambridge University Press, 1988.

[49] Christian JE Castle and Andrew T Crooks. Principles and concepts of agent-based

modelling for developing geospatial simulations. 2006.

[50] Armano Srbljinović and Ognjen Škunca. An introduction to agent based mod-

elling and simulation of social processes. Interdisciplinary Description of Complex

Systems: INDECS, 1(1-2):1–8, 2003.

[51] Joshua M Epstein. Generative social science: Studies in agent-based computational

modeling. Princeton University Press, 2006.

Bibliography 213

[52] Lars-Erik Cederman. Emergent actors in world politics: how states and nations

develop and dissolve, volume 2. Princeton University Press, 1997.

[53] Cedric Perret, Emma Hart, and Simon T Powers. From disorganized equality

to efficient hierarchy: how group size drives the evolution of hierarchy in human

societies. Proceedings of the Royal Society B, 287(1928):20200693, 2020.

[54] Joshua M Epstein. Remarks on the foundations of agent-based generative social

science. Handbook of computational economics, 2:1585–1604, 2006.

[55] Joshua M Epstein. Agent-based computational models and generative social sci-

ence. Complexity, 4(5):41–60, 1999.

[56] Mark W Lake. Explaining the past with abm: on modelling philosophy. In Agent-

based modeling and simulation in archaeology, pages 3–35. Springer, 2015.

[57] Eugene Ch’ng. Using games engines for archaeological visualisation: Recreating

lost worlds. In 11th International Conference on Computer Games: AI, Animation,

Mobile, Educational & Serious Games, CGames, volume 7, pages 26–30, 2007.

[58] Steven M Manson. Agent-based modeling and genetic programming for modeling

land change in the southern yucatan peninsular region of mexico. Agriculture,

ecosystems & environment, 111(1-4):47–62, 2005.

[59] C Michael Barton. Complexity, social complexity, and modeling. Journal of Ar-

chaeological Method and Theory, 21(2):306–324, 2014.

[60] Timothy A Kohler, R Kyle Bocinsky, Denton Cockburn, Stefani A Crabtree,

Mark D Varien, Kenneth E Kolm, Schaun Smith, Scott G Ortman, and Ziad Kobti.

Modelling prehispanic pueblo societies in their ecosystems. Ecological Modelling,

241:30–41, 2012.

[61] Gaku Yamamoto. Agent server technology for managing millions of agents. In

International Workshop on Massively Multiagent Systems, pages 1–12. Springer,

2004.

[62] Hazel R Parry and Andrew J Evans. A comparative analysis of parallel processing

and super-individual methods for improving the computational performance of a

large individual-based model. Ecological Modelling, 214(2-4):141–152, 2008.

Bibliography 214

[63] Volker Grimm, Uta Berger, Finn Bastiansen, Sigrunn Eliassen, Vincent Ginot, Jarl

Giske, John Goss-Custard, Tamara Grand, Simone K Heinz, Geir Huse, et al. A

standard protocol for describing individual-based and agent-based models. Ecolog-

ical modelling, 198(1-2):115–126, 2006.

[64] Volker Grimm, Uta Berger, Donald L DeAngelis, J Gary Polhill, Jarl Giske, and

Steven F Railsback. The odd protocol: a review and first update. Ecological

modelling, 221(23):2760–2768, 2010.

[65] Volker Grimm, Gary Polhill, and Julia Touza. Documenting social simulation

models: the odd protocol as a standard. In Simulating social complexity, pages

349–365. Springer, 2017.

[66] Birgit Müller, Friedrich Angermueller, Romina Drees, Gunnar Dressler, Jürgen

Groeneveld, Christian Klassert, Maja Schlüter, Jule Schulze, Hanna Weise, and

Nina Schwarz. Describing human decisions in agent-based social-ecological models-

odd+ d an extension of the odd protocol. Available at SSRN 2044736, 2012.

[67] Claudio Cioffi-Revilla and Mark Rouleau. Mason rebeland: An agent-based model

of politics, environment, and insurgency. International Studies Review, 12(1):31–

52, 2010.

[68] Gianluca Manzo and Toby Matthews. Potentialities and limitations of agent-based

simulations. Revue française de sociologie, 55(4):653–688, 2014.

[69] Volker Grimm, Eloy Revilla, Uta Berger, Florian Jeltsch, Wolf M Mooij, Steven F

Railsback, Hans-Hermann Thulke, JacobWeiner, ThorstenWiegand, and Donald L

DeAngelis. Pattern-oriented modeling of agent-based complex systems: lessons

from ecology. science, 310(5750):987–991, 2005.

[70] Jeffrey S Dean, George J Gumerman, and Joshua M Epstein. Understanding

anasazi culture change through agent-based modeling. Dynamics in human and

primate societies: Agent-based modeling of social and spatial processes, pages 179–

205, 2000.

[71] Friedrich Recknagel. Applications of machine learning to ecological modelling.

Ecological modelling, 146(1-3):303–310, 2001.

Bibliography 215

[72] Claudio Cioffi-Revilla. A methodology for complex social simulations. Journal of

Artificial Societies and Social Simulation, 13(1):7, 2010.

[73] Bruce Hannon and Matthias Ruth. Dynamic modeling. Springer Science & Business

Media, 2001.

[74] Anand S Rao, Michael P Georgeff, et al. Bdi agents: from theory to practice. In

ICMAS, volume 95, pages 312–319, 1995.

[75] Sander van der Hoog. Deep learning in (and of) agent-based models: A prospectus.

arXiv preprint arXiv:1706.06302, 2017.

[76] Benoît Calvez and Guillaume Hutzler. Automatic tuning of agent-based models

using genetic algorithms. In International Workshop on Multi-Agent Systems and

Agent-Based Simulation, pages 41–57. Springer, 2005.

[77] Ronald C Arkin, Ronald C Arkin, et al. Behavior-based robotics. MIT press, 1998.

[78] Wenwu Tang. Simulating complex adaptive geographic systems: A geographically

aware intelligent agent approach. Cartography and Geographic Information Science,

35(4):239–263, 2008.

[79] Christophe Deissenberg, Sander Van Der Hoog, and Herbert Dawid. Eurace: A

massively parallel agent-based model of the european economy. Applied Mathemat-

ics and Computation, 204(2):541–552, 2008.

[80] M Scheutz, P Schermerhorn, R Connaughton, and A Dingler. Swages-an extendable

distributed experimentation system for large-scale agent-based alife simulations.

Proceedings of Artificial Life X, pages 412–419, 2006.

[81] Nicholson Collier and Michael North. Repast hpc: A platform for large-scale agent-

based modeling. Large-Scale Computing, pages 81–109, 2012.

[82] Francesco Lamperti, Andrea Roventini, and Amir Sani. Agent-based model cal-

ibration using machine learning surrogates. Journal of Economic Dynamics and

Control, 90:366–389, 2018.

[83] Alexander Forrester, Andras Sobester, and Andy Keane. Engineering design via

surrogate modelling: a practical guide. John Wiley & Sons, 2008.

Bibliography 216

[84] Graupe Daniel. Principles of artificial neural networks, volume 7. World Scientific,

2013.

[85] Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through

augmenting topologies. Evolutionary computation, 10(2):99–127, 2002.

[86] David J Montana and Lawrence Davis. Training feedforward neural networks using

genetic algorithms. In IJCAI, volume 89, pages 762–767, 1989.

[87] Wenchao Yi, Jinghui Zhong, Singkuang Tan, Wentong Cai, and Nan Hu. Surro-

gate assisted calibration framework for crowd model calibration. In 2017 Winter

Simulation Conference (WSC), pages 1216–1227. IEEE, 2017.

[88] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. PhD

thesis, King’s College, Cambridge, 1989.

[89] Yifeng Zhang and Siddhartha Bhattacharyya. Effectiveness of q-learning as a tool

for calibrating agent-based supply network models. Enterprise Information Sys-

tems, 1(2):217–233, 2007.

[90] Ammar Jalalimanesh, Hamidreza Shahabi Haghighi, Abbas Ahmadi, Hossein He-

jazian, and Madjid Soltani. Multi-objective optimization of radiotherapy: dis-

tributed q-learning and agent-based simulation. Journal of ExpErimEntal & thE-

orEtical artificial intElligEncE, 29(5):1071–1086, 2017.

[91] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep rein-

forcement learning. arXiv preprint arXiv:1312.5602, 2013.

[92] David E Edward Goldberg. Genetic algorithms in search, optimization & machine

learning. 1989.

[93] Melanie Mitchell. An introduction to genetic algorithms. MIT press, 1998.

[94] Claudio Cioffi-Revilla, Kenneth De Jong, and Jeffrey K Bassett. Evolutionary

computation and agent-based modeling: biologically-inspired approaches for un-

derstanding complex social systems. Computational and Mathematical Organiza-

tion Theory, 18(3):356–373, 2012.

Bibliography 217

[95] Francis Oloo and Gudrun Wallentin. An adaptive agent-based model of homing

pigeons: A genetic algorithm approach. ISPRS International Journal of Geo-

Information, 6(1):27, 2017.

[96] Robert G Reynolds. An introduction to cultural algorithms. In Proceedings of

the third annual conference on evolutionary programming, pages 131–139. World

Scientific, 1994.

[97] Chan-Jin Chung and Robert G Reynolds. A testbed for solving optimization prob-

lems using cultural algorithms. In Evolutionary programming, pages 225–236, 1996.

[98] Mahamed GH Omran. A novel cultural algorithm for real-parameter optimization.

International Journal of Computer Mathematics, 93(9):1541–1563, 2016.

[99] Kaiqiao Yang, Kenjiro Maginu, and Hirosato Nomura. Cultural algorithm-based

quantum-behaved particle swarm optimization. International journal of computer

mathematics, 87(10):2143–2157, 2010.

[100] Ziad Kobti, Robert G Reynolds, and Tim Kohler. Agent-based modeling of cultural

change in swarm using cultural algorithms. Funded by NSF grant BCS-0119981,

2004.

[101] Robert G Reynolds and Mostafa Z Ali. The social fabric approach as an approach

to knowledge integration in cultural algorithms. In 2008 IEEE Congress on Evolu-

tionary Computation (IEEE World Congress on Computational Intelligence), pages

4200–4207. IEEE, 2008.

[102] Robert G Reynolds and Bin Peng. Cultural algorithms: Modeling of how cultures

learn to solve problems. In Proceedings of the 16th IEEE International Conference

on Tools with Artificial Intelligence, pages 166–172, 2004.

[103] Colin D WRen, Chloe ATWATeR, Kim Hill, Marco Janssen, Jan de Vynck, and

Curtis W MAReAn. An agent-based approach to weighted decision making in the

spatially and temporally variable south african palaeoscape. 2019.

[104] Carolina Cucart-Mora, Sergi Lozano, and Javier Fernández-López de Pablo. Bio-

cultural interactions and demography during the middle to upper palaeolithic tran-

sition in iberia: An agent-based modelling approach. Journal of Archaeological

Science, 89:14–24, 2018.

Bibliography 218

[105] Sonia Schulenburg and Peter Ross. An adaptive agent based economic model. In

International Workshop on Learning Classifier Systems, pages 263–282. Springer,

1999.

[106] Bing Zhang, Yongliang Zhang, and Jun Bi. An adaptive agent-based modeling

approach for analyzing the influence of transaction costs on emissions trading mar-

kets. Environmental Modelling & Software, 26(4):482–491, 2011.

[107] Robert N Bernard et al. Using adaptive agent-based simulation models to assist

planners in policy development: The case of rent control. Rutgers University,

Department of Urban Planning and Policy Development, 1999.

[108] Blake LeBaron. Agent-based computational finance: Suggested readings and early

research. Journal of Economic Dynamics and Control, 24(5-7):679–702, 2000.

[109] Josh C Bongard. Evolutionary robotics. Communications of the ACM, 56(8):74–83,

2013.

[110] Marco A Janssen, Lilian Na’ia Alessa, Michael Barton, Sean Bergin, and Allen Lee.

Towards a community framework for agent-based modelling. Journal of Artificial

Societies and Social Simulation, 11(2):6, 2008.

[111] Robert Axelrod. The complexity of cooperation: Agent-based models of competition

and collaboration, volume 3. Princeton University Press, 1997.

[112] Bruce Edmonds and Scott Moss. From kiss to kids–an ‘anti-simplistic’modelling

approach. In International workshop on multi-agent systems and agent-based sim-

ulation, pages 130–144. Springer, 2004.

[113] Federico Bianchi, Francisco Grimaldo, Giangiacomo Bravo, and Flaminio Squaz-

zoni. The peer review game: an agent-based model of scientists facing resource

constraints and institutional pressures. Scientometrics, 116(3):1401–1420, 2018.

[114] James Andreoni and John HMiller. Auctions with artificial adaptive agents. Games

and economic behavior, 10(1):39–64, 1995.

[115] David A Ostrowski, Troy Tassier, Mark Everson, and Robert G Reynolds. Using

cultural algorithms to evolve strategies in agent-based models. In Proceedings of

the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600),

volume 1, pages 741–746. IEEE, 2002.

Bibliography 219

[116] Lei Xue, Changyin Sun, Donald Wunsch, Yingjiang Zhou, and Fang Yu. An adap-

tive strategy via reinforcement learning for the prisoner’s dilemma game. IEEE/-

CAA Journal of Automatica Sinica, 5(1):301–310, 2017.

[117] Iza Romanowska, Stefani Crabtree, Kathryn Harris, and Benjamin Davies. Agent-

based modeling for archaeologists: Part 1 of 3. 2019.

[118] Benjamin Davies, Iza Romanowska, Kathryn Harris, and Stefani A Crabtree. Com-

bining geographic information systems and agent-based models in archaeology:

Part 2 of 3. Advances in Archaeological Practice, 7(2):185, 2019.

[119] Stefani A Crabtree, Kathryn Harris, Benjamin Davies, and Iza Romanowska. Out-

reach in archaeology with agent-based modeling: Part 3 of 3. Advances in Archae-

ological Practice, 7(2):194, 2019.

[120] Noel Llopis. Data-oriented design (or why you might be shooting your-

self in the foot with oop), Dec 2009. URL https://gamesfromwithin.com/

data-oriented-design.

[121] Timo Szczepanska, Patrycja Antosz, Jan Ole Berndt, Melania Borit, Edmund

Chattoe-Brown, Sara Mehryar, Ruth Meyer, Stephan Onggo, and Harko Verha-

gen. Gam on! six ways to explore social complexity by combining games and

agent-based models. International Journal of Social Research Methodology, pages

1–15, 2022.

[122] Thibault Raffaillac and Stéphane Huot. Polyphony: Programming interfaces and

interactions with the entity-component-system model. Proceedings of the ACM on

Human-Computer Interaction, 3(EICS):1–22, 2019.

[123] Carl Folke, Stephen R Carpenter, Brian Walker, Marten Scheffer, Terry Chapin,

and Johan Rockström. Resilience thinking: integrating resilience, adaptability and

transformability. Ecology and society, 15(4), 2010.

[124] Andy Pike, Stuart Dawley, and John Tomaney. Resilience, adaptation and adapt-

ability. Cambridge journal of regions, economy and society, 3(1):59–70, 2010.

[125] Maria Chli and Philippe De Wilde. The emergence of knowledge exchange: An

agent-based model of a software market. IEEE Transactions on Systems, Man,

and Cybernetics-Part A: Systems and Humans, 38(5):1056–1067, 2008.

https://gamesfromwithin.com/data-oriented-design
https://gamesfromwithin.com/data-oriented-design

Bibliography 220

[126] Ben Fitzhugh, S Colby Phillips, and Erik Gjesfjeld. Modeling hunter-gatherer infor-

mation networks: an archaeological case study from the kuril islands. Information

and its role in hunter-gatherer bands, pages 85–115, 2011.

[127] Matteo Giuliani and A Castelletti. Assessing the value of cooperation and informa-

tion exchange in large water resources systems by agent-based optimization. Water

Resources Research, 49(7):3912–3926, 2013.

[128] Ron Sun. The importance of cognitive architectures: An analysis based on clarion.

Journal of Experimental & Theoretical Artificial Intelligence, 19(2):159–193, 2007.

[129] Wander Jager and Marco Janssen. An updated conceptual framework for integrated

modeling of human decision making: The consumat ii. In paper for workshop

complexity in the Real World@ ECCS, pages 1–18, 2012.

[130] Carlos Miguel Reis Silva de Oliveira e Lemos. On Agent-Based Modelling of Large

Scale Conflict Against a Central Authority: from Mechanisms to Complex Be-

haviour. PhD thesis, Instituto Universitário de Lisboa, 12 2016.

[131] Elva JH Robinson, Francis LW Ratnieks, and M Holcombe. An agent-based model

to investigate the roles of attractive and repellent pheromones in ant decision mak-

ing during foraging. Journal of theoretical Biology, 255(2):250–258, 2008.

[132] Shengxiang Yang, Yong Jiang, and Trung Thanh Nguyen. Metaheuristics for dy-

namic combinatorial optimization problems. IMA Journal of Management Mathe-

matics, 24(4):451–480, 2013.

[133] H Van Dyke Parunak et al. " go to the ant": Engineering principles from natural

multi-agent systems. Annals of Operations Research, 75:69–101, 1997.

[134] Kelly Rendón Rozo, Julian Arellana, Alcides Santander-Mercado, and Maria Jubiz-

Diaz. Modelling building emergency evacuation plans considering the dynamic

behaviour of pedestrians using agent-based simulation. Safety science, 113:276–

284, 2019.

[135] Jeff Jones. Characteristics of pattern formation and evolution in approximations

of physarum transport networks. Artificial life, 16(2):127–153, 2010.

Bibliography 221

[136] Taylor M Anderson and Suzana Dragićević. Network-agent based model for simu-

lating the dynamic spatial network structure of complex ecological systems. Eco-

logical Modelling, 389:19–32, 2018.

[137] Stan Hendrickx. Predynastic—early dynastic chronology. In Ancient Egyptian

Chronology, pages 53–93. Brill, 2006.

[138] Fekri A Hassan. The predynastic of egypt. Journal of World Prehistory, 2(2):

135–185, 1988.

[139] Barry J Kemp. Ancient Egypt: anatomy of a civilisation. Routledge, 2007.

[140] Kent V Flannery. Process and agency in early state formation. Cambridge Archae-

ological Journal, 9(1):3–21, 1999.

[141] Robert L Carneiro. The chiefdom: precursor of the state. The transition to state-

hood in the New World, pages 37–79, 1981.

[142] Henry T Wright and DJ Meltzer. The evolution of civilizations. IN American

Archaeology Past and Future. DJ, 1986.

[143] Mark Lehner. Fractal house of pharaoh: Ancient egypt as a complex adaptive

system, a trial. Dynamics in human and primate societies: Agent-based modelling

of social and spatial processes, pages 275–353, 2000.

[144] Sarah Symons and Derek Raine. Agent-based models of ancient egypt. Proceed-

ings of Informatique et Égyptologie. Piscataway, NJ. http://www. physics. le. ac.

uk/ComplexSystems/papers/AgentBasedModelsEgypt2008. pdf (accessed 28/5/12),

2008.

[145] Geoff Nitschke, Jessica Nitschke, Alexander Furman, and Matthew Cherry. Mod-

eling patterns of wealth disparity in predynastic upper egypt. In Artificial Life

Conference Proceedings 14, pages 322–323. MIT Press, 2017.

[146] Robert Axelrod. The dissemination of culture: A model with local convergence

and global polarization. Journal of conflict resolution, 41(2):203–226, 1997.

[147] Atesmachew Hailegiorgis, Andrew Crooks, and Claudio Cioffi-Revilla. An agent-

based model of rural households’ adaptation to climate change. Journal of Artificial

Societies and Social Simulation, 21(4), 2018.

Bibliography 222

[148] James E Maddux and Ronald W Rogers. Protection motivation and self-efficacy: A

revised theory of fear appeals and attitude change. Journal of experimental social

psychology, 19(5):469–479, 1983.

[149] John H Holland. Genetic algorithms. Scientific american, 267(1):66–73, 1992.

[150] Duanyang Xu, Alin Song, Hefeng Tong, Hongyan Ren, Yunfeng Hu, and Quanqin

Shao. A spatial system dynamic model for regional desertification simulation–a case

study of ordos, china. Environmental Modelling & Software, 83:179–192, 2016.

[151] Charles Warren Thornthwaite. An approach toward a rational classification of

climate. Geographical review, 38(1):55–94, 1948.

[152] Christopher S Potter, James T Randerson, Christopher B Field, Pamela A Matson,

Peter M Vitousek, Harold A Mooney, and Steven A Klooster. Terrestrial ecosystem

production: a process model based on global satellite and surface data. Global

Biogeochemical Cycles, 7(4):811–841, 1993.

[153] KE Saxton, W_J Rawls, J Sv Romberger, and RI Papendick. Estimating gen-

eralized soil-water characteristics from texture. Soil science society of America

Journal, 50(4):1031–1036, 1986.

[154] Christopher B Field, James T Randerson, and Carolyn M Malmström. Global net

primary production: combining ecology and remote sensing. Remote sensing of

Environment, 51(1):74–88, 1995.

[155] Rimjhim Aggarwal, Sinaia Netanyahu, and Claudia Romano. Access to natural

resources and the fertility decision of women: the case of south africa. Environment

and Development Economics, 6(2):209–236, 2001.

[156] Peter Bellwood and Marc Oxenham. The expansions of farming societies and

the role of the neolithic demographic transition. In The Neolithic demographic

transition and its consequences, pages 13–34. Springer, 2008.

[157] Andreas Angourakis, José Ignacio Santos, José Manuel Galán, and Andrea L Balbo.

Food for all: An agent-based model to explore the emergence and implications of

cooperation for food storage. Environmental Archaeology, 20(4):349–363, 2015.

Bibliography 223

[158] T Tadono, H Ishida, F Oda, S Naito, K Minakawa, and H Iwamoto. Precise global

dem generation by alos prism. ISPRS Annals of the Photogrammetry, Remote

Sensing and Spatial Information Sciences, 2(4):71, 2014.

[159] Matthew Rodell, PR Houser, UEA Jambor, J Gottschalck, Kieran Mitchell, C-J

Meng, Kristi Arsenault, B Cosgrove, J Radakovich, M Bosilovich, et al. The global

land data assimilation system. Bulletin of the American Meteorological society, 85

(3):381–394, 2004.

[160] EM Gallagher. Evolutionary Models for the Origins of Agriculture. PhD thesis,

UCL (University College London), 2017.

[161] Barbara Bell. The oldest records of the nile floods. The Geographical Journal, 136

(4):569–573, 1970.

[162] Fekri A Hassan. The dynamics of a riverine civilization: a geoarchaeological per-

spective on the nile valley, egypt. World archaeology, 29(1):51–74, 1997.

[163] Guus Ten Broeke, George Van Voorn, and Arend Ligtenberg. Which sensitivity

analysis method should i use for my agent-based model? Journal of Artificial

Societies and Social Simulation, 19(1):5, 2016.

[164] Magdalena Maria Nowak et al. Results of the preliminary analysis of lower egyptian

settlement discovered on the central kom in tell el-farkha. Studies in Ancient Art

and Civilization, (15):49–63, 2011.

[165] Ofer Bar-Yosef and Anna Belfer-Cohen. The origins of sedentism and farming

communities in the levant. Journal of world prehistory, 3(4):447–498, 1989.

[166] Wei Zhang, Andrea Valencia, and Ni-Bin Chang. Synergistic integration between

machine learning and agent-based modeling: A multidisciplinary review. IEEE

Transactions on Neural Networks and Learning Systems, 2021.

[167] Minae Kwon, Erdem Biyik, Aditi Talati, Karan Bhasin, Dylan P Losey, and Dorsa

Sadigh. When humans aren’t optimal: Robots that collaborate with risk-aware

humans. In 2020 15th ACM/IEEE International Conference on Human-Robot In-

teraction (HRI), pages 43–52. IEEE, 2020.

Bibliography 224

[168] Milica Kašanin-Grubin, Francesca Vergari, Francesco Troiani, and Marta

Della Seta. The role of lithology: Parent material controls on badland devel-

opment. In Badlands Dynamics in a Context of Global Change, pages 61–109.

Elsevier, 2018.

[169] L Shanan, NH Tadmor, M Evenari, and P Reiniger. Runoff farming in the desert.

iii. microcatchments for improvement of desert range 1. Agronomy Journal, 62(4):

445–449, 1970.

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivations
	1.2 Research Questions
	1.3 Contributions
	1.4 Outline

	2 Background and Related Work
	2.1 Agent-Based Modelling
	2.1.1 Types of Models
	2.1.1.1 Scale-Models
	2.1.1.2 Idealized-Models
	2.1.1.3 Analogical-Models

	2.1.2 What is an Agent?
	2.1.3 Environments
	2.1.4 Agent-Based Modelling in the Social Sciences
	2.1.4.1 Agent-Based Modelling in Archaeology

	2.1.5 Limitations of Agent-Based Models
	2.1.5.1 ABM Suffer at Scale
	2.1.5.2 ABM are Black Boxes
	2.1.5.3 ABM are Unpredictable
	2.1.5.4 ABM often Lack Adaptability

	2.1.6 Frameworks
	2.1.6.1 Mathematical
	2.1.6.2 Conceptual

	2.2 Machine Learning and Agent-Based Models
	2.2.1 Machine Learning for Adapting Agent Behaviour
	2.2.2 Complexity Reduction
	2.2.3 Parameter Tuning
	2.2.4 Surrogate Modelling
	2.2.5 Reinforcement Learning
	2.2.6 Evolutionary Algorithms
	2.2.7 Cultural Algorithms

	2.3 A Review of the State of the Art
	2.3.1 Agent-Based Modelling in Practice
	2.3.2 Machine Learning in Agent-Based Modelling
	2.3.3 ABM Software Packages and Reproducibility

	2.4 Discussion and Conclusions

	3 Methodology
	3.1 ECAgent - An ECS framework for developing ABM
	3.1.1 Motivation
	3.1.2 Framework
	3.1.2.1 Model
	3.1.2.2 Agents (Entities)
	3.1.2.3 Environment
	3.1.2.4 Systems
	3.1.2.5 Other Features

	3.1.3 Case Study: A Simple Predator-Prey Model
	3.1.3.1 Validation

	3.1.4 Discussion

	3.2 Designing Adaptive-Agents using Information Exchange
	3.2.1 What is Adaptability?
	3.2.2 Measuring Adaptability
	3.2.3 Adaptation and Information Exchange
	3.2.4 Formal Definition
	3.2.5 Case Study: Stigmergic Adaptation of Foraging Ants
	3.2.5.1 Validation

	3.2.6 Discussion

	3.3 The Curios Case of Predynastic Egypt
	3.3.1 Background
	3.3.1.1 Neolithic Period 6000 - 4600 BC
	3.3.1.2 Predynastic Period 4650 - 3150 BC
	3.3.1.3 Early Dynastic Period 3050 - 2686 BC

	3.3.2 Theories
	3.3.2.1 Political Organization of Egypt in the Predynastic Period
	3.3.2.2 Agriculture and the Origins of the State in Ancient Egypt
	3.3.2.3 Ancient Egypt: Anatomy of a Civilization
	3.3.2.4 Process and agency in early state formation
	3.3.2.5 The Egyptian Predynastic and State Formation

	3.3.3 Putting it all together
	3.3.3.1 Natural Factors:
	3.3.3.2 Social Factors:
	3.3.3.3 What should an ABM of Predynastic Egypt look like?

	3.4 NeoCOOP - An ABM for Simulating Complex Social Phenomena in Ancient Societies
	3.4.1 Environment
	3.4.2 Agent-Types
	3.4.2.1 Traditional Agents
	3.4.2.2 Rule-Based Adaptive Agents
	3.4.2.3 Utility Agents
	3.4.2.4 Information Exchanging Agents

	3.4.3 NeoCOOP Systems
	3.4.3.1 Global Environment System
	3.4.3.2 Soil Moisture System
	3.4.3.3 Vegetation Growth System
	3.4.3.4 Resource Acquisition System
	3.4.3.5 Resource Transfer System
	3.4.3.6 Resource Consumption System
	3.4.3.7 Population Management System
	3.4.3.8 Information Exchange System
	3.4.3.9 Rule-based Adaptation System

	3.4.4 Limitations of NeoCOOP

	3.5 Summary

	4 Experiments and Results
	4.1 Data Acquisition
	4.2 Climate Data Generation
	4.3 Validation
	4.4 Parameter Tuning and Experiment Setup
	4.5 Results
	4.6 Analysis
	4.6.1 Rate of Emergent Agricultural Practices
	4.6.2 Settlement Density and Population Migration
	4.6.3 The Importance of Information Throughput
	4.6.4 Results in the context of Predynastic Egypt

	4.7 Summary

	5 Discussion
	5.1 Machine Learning vs. Rule-based Agents
	5.2 Emergent Phenomena
	5.3 The Formation of the Ancient Egyptian State
	5.4 Agent-based Modelling and Simulation Complexity
	5.5 Summary

	6 Conclusions and Future Work
	6.1 Future Work

	A ODD+D Description
	A.1 Overview
	A.1.1 Purpose
	A.1.1.1 What is the purpose of the study?
	A.1.1.2 For whom is the model designed?

	A.1.2 Entities, State Variables and Scales
	A.1.2.1 What kinds of entities are in the model?
	A.1.2.2 By what attributes(i.e. state variables and parameters) are these entities characterized?
	A.1.2.3 What are the exogenous factors/drivers of the model?
	A.1.2.4 If applicable, how is space included in the model?
	A.1.2.5 What are the temporal and spacial resolutions and extents of the model?

	A.1.3 Process Overview and Scheduling
	A.1.3.1 What entity does what and in what order?

	A.2 Design Concepts
	A.2.1 Theoretical and Empirical Background
	A.2.1.1 Which general theories concepts, theories or hypotheses are underlying the model's design or at the level(s) of the submodel(s) (apart from the decision model)? What is the link to complexity and purpose of the model?
	A.2.1.2 On what assumption is/are agents' decision model(s) based?
	A.2.1.3 Why is a/are certain decision model(s) chosen?
	A.2.1.4 If the model/ a submodel is based on empirical data, where does that data come from?
	A.2.1.5 At which level of aggregation were the data available?

	A.2.2 Individual Decision Making
	A.2.2.1 What are the subjects and objects of decision-making? On which level of aggregation is decision-making modelled? Are multiple levels of decision making included?
	A.2.2.2 What is the basic rationality behind agents' decision-making? Do agents pursue an explicit objective or have other success criteria?
	A.2.2.3 How do agents make their decisions?
	A.2.2.4 Do the agents adapt their behaviour to changing endogenous and exogenous state variables? And if yes, how?
	A.2.2.5 Do social norms or cultural values play a role in the decision making process?
	A.2.2.6 Do spacial aspects play a role in the decision making process?
	A.2.2.7 Do temporal aspects play a role in the decision making process?
	A.2.2.8 To which extent and how is uncertainty included in the agents' decision rules?

	A.2.3 Learning
	A.2.3.1 Is individual learning included in the decision process? How do agents' change their rules over time as consequence of their experience?
	A.2.3.2 Is collective learning implemented in the model?

	A.2.4 Individual Sensing
	A.2.4.1 What endogenous and exogenous state variables are individuals assumed to sense and consider in their decisions? Is their sensing process erroneous?
	A.2.4.2 What state variables of which other individuals can an individual perceive? Is the sensing process erroneous?
	A.2.4.3 What is the spatial scale of sensing?
	A.2.4.4 Are the mechanisms by which agents obtain information modelled explicitly, or are individuals simply assumed to know these variables?
	A.2.4.5 Are costs for cognition and costs for gathering information included in the model?

	A.2.5 Individual Prediction
	A.2.6 Interaction
	A.2.6.1 Are interactions among agents and entities assumed as direct or indirect?
	A.2.6.2 On what do the interactions depend?
	A.2.6.3 If the interactions involve communication, how are such communications represented?
	A.2.6.4 If a coordination network exists, how does it affect the agent behaviour? Is the structure of the network imposed or emergent?

	A.2.7 Collectives
	A.2.7.1 Do the individuals form or belong to aggregations that affect and are affected by the individuals? Are these aggregations imposed by the modeller or do they emerge during the simulation?
	A.2.7.2 How are collectives represented?

	A.2.8 Heterogeneity
	A.2.8.1 Are the agents heterogeneous? If yes, which state variables and/or processes differ between the agents?
	A.2.8.2 Are the agents heterogeneous in their decision-making? If yes, which decision models or decision objects differ between the agents?

	A.2.9 Stochasticity
	A.2.9.1 What processes (including initialisation) are modelled by assuming they are random or partly random?

	A.2.10 Observation
	A.2.10.1 What data are collected from the ABM for testing, understanding and analysing it, and how and when are they collected?
	A.2.10.2 What key results, outputs or characteristics of the model are emerging from the individuals? (Emergence)

	A.3 Details
	A.3.1 Implementation Details
	A.3.1.1 How has the model been implemented?
	A.3.1.2 Is the model accessible, and if so where?

	A.3.2 Initialization
	A.3.2.1 What is the initial state of the model world, i.e. at time t = 0 of a simulation run?
	A.3.2.2 Is the initialisation always the same, or is it allowed to vary among simulations?
	A.3.2.3 Are the initial values chosen arbitrarily or based on data?

	A.3.3 Input Data
	A.3.3.1 Does the model use input from external sources such as data files or other models to represent processes that change over time?

	A.3.4 Submodels
	A.3.4.1 What, in detail, are the submodels that represent the processes listed in ‘Process overview and scheduling’?
	A.3.4.2 What are the model parameters, their dimensions and reference values?
	A.3.4.3 How were the submodels designed or chosen, and how were they parameterised and then tested?

	B Parameter Tuning and Model Analysis
	B.1 Code Coverage and Validation
	B.2 Optuna
	B.3 Model Parameters

	C GIS Data Preprocessing
	C.1 Height Map
	C.2 Slope Map
	C.3 Flood Map
	C.4 Soil Texture Maps

	D Supplementary Experiments
	D.1 Experiment Design
	D.2 Results and Discussion

	Bibliography

