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Abstract—A fundamental problem in chemical product design
is how to suitably identify chemical compounds that optimise
multiple properties for a given application whilst satisfying
relevant constraints. Current product synthesis generally uses
trial-and-error experimentation, requiring lengthy and expensive
research and development efforts. This paper introduces a novel
computational chemistry approach for product design combining
geometric deep learning for inference of property values and
evolutionary multi-objective optimisation for identification of
products of interest. Preliminary empirical results indicate that
the proposed approach can be used to optimise product design
considering multiple objectives and constraints given incomplete
molecular attribute information.

Index Terms—Evolutionary Multi-Objective Optimisation,
Computational Chemistry, Geometric Deep Learning

I. INTRODUCTION

Novel product design based on computational molecular
discovery [1] has demonstrated significantly reduced design
iterations, shorter iteration cycle times and increased chemical
synthesis in comparison to trial-and-error chemical synthesis
methods [2]. Computational molecular design achieves
chemical synthesis via iterative selection and modification of
compounds to optimise desired attributes of products such
as solvents, ionic liquids, polymers and medications [3]. For
example, target attributes in pharmacokinetics can include
low toxicity and favourable synthetic accessibility [4].

Deep Learning [5] (DL) has been successfully applied for
synthetic compound generation and attribute value inference
[6], [7]. For example, auto-encoders have been trained
to convert latent-spaces to molecule descriptors (such as
SMILES: Simplified Molecular Input Line Entry Specification
[8]) and encode molecular solutions [9]. Recent DL advances
have resulted in Transformer-based methods, with impressive
results in natural language processing, machine translation,
and image analysis [10]. These architectures use Self-
Attention Mechanisms (SAM) to explore data organised
in simple structures, such as sequence relations in texts
and neighbourhood relations in image segments, to build
general, goal-oriented relations. However, sophisticated data
organisation such as graphs [11], has proved challenging
for Transformers. Graph Transformers (GT) were developed
to address this based on purpose-oriented forms of graph
encoding, resulting in molecular attribute prediction that uses

topological and geometric information to represent molecular
structure. This is the Similar Property Principle [12], an
assumption that molecular properties are mostly determined
by their 3D structure [13].

GT examples include GROVER and MPG [14], which use
Graph Neural Networks (GNN) to extract local structural
information from molecular graphs and feed the resulting
embedding into Transformer layers. Recent approaches
have directly integrated graph structural information into
Transformers via improved positional encoding [15] and
attention maps derived from graph topology [16], as well as
using inter-atomic distance as a form of geometric information
to be explored in attention maps [17]. Concurrently, various
evolutionary Computational Chemistry (CompChem) methods
have also yielded competitive results for de novo molecular
generation [18]–[21]. In these methods, the chemical search
space is defined via specific molecular encoding, and selection
and variation operators defined based on molecular fragments
[22]. CompChem methods for novel molecular synthesis
[23], [24] have used Evolutionary Algorithms (EA) in
combination with DL [25] for attribute prediction, increasing
the likelihood of generating synthetically viable compounds
by using EA based stochastic search accelerated by specific
domain knowledge inferred using DL.

To address ongoing research efforts that combine DL and
CompChem for automated design of environmental sustain-
able chemical products, this study presents an evolutionary
molecular design method combining DL and Multi-Objective
Optimisation (MOO) [26]. Specifically, we use Geometric
Deep Learning [11] to estimate molecular attribute values in
combination with evolutionary MOO based on Information-
geometric Optimisation [27]. MOO directs molecular search
using multiple objectives to minimise toxicity and maximise
synthetic accessibility, which are estimated using DL.

II. METHODS

A. Prediction of Molecular Attributes

Prediction of molecular attributes can be summarised as:
(1) Given a set A of molecular attributes which can be
ascribed to compounds; a problem space comprised by a
cloud of compounds for which 3D structural information and
chemical composition are assumed to be available; and one
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particular attribute A ∈ A whose value is known for a subset
of compounds in the problem space; (2) Find an appropriate
disposition of compounds in an appropriate N-dimensional
space such that the distance between pairs of compounds
characterises their similarity; and predictions of values of the
attribute A for all compounds in the problem space.

We apply the Uni-Mol 3D GNN [17] as our molecular
attribute prediction method. Uni-Mol has demonstrated
superior molecular attribute task performance prediction
on benchmark data sets [17], using a Transformer-based
architecture and Self-Attention Mechanisms (SAM) to explore
structured data and build goal-oriented relations. Molecules
are represented as 3D nodes with atom type and 3D
coordinates, with invariant spatial positional encoding and
pair-level representation to effectively capture 3D information.

Our adopted molecular attribute prediction method adapts
relative positional encoding by utilising Euclidean distances of
all atom pairs, followed by a pair-type aware Gaussian kernel
[28]. Formally, the D-channel positional encoding of atom pair
ij is denoted as equations (1), (2) and (3), in which equation
(3) is the Gaussian density function:

pij = {G(A(dij , tij ; a,b), µk, σk)|k ∈ [1, D]} (1)

A(d, r; a,b) = ard+ br (2)

G(d, µ, σ) =
1

σ
√
2π

e- (d-µ)2

2σ2 (3)

In these equations µ, σ are Gaussian density function param-
eters, dij is the Euclidean distance of atom pair ij, and tij is
the pair-type of atom pair ij. Pair-type is determined by atom
pair types ij. A(dij , tij ; a,b) is the affine transformation with
parameters a, b, and dij corresponding to its pair-type tij .
To initialise pair-level representation we use spatial positional
encoding with atom-to-pair communication using multi-head
SAM query-key products. Equation 4 is the update of ij pair
representation:

q0ij = pijM, ql+1
ij = qlij + {

Ql,h
i (Kl,h

j )T
√
d

|h ∈ [1, H]} (4)

In this equation qlij is the pair representation of atoms
ij in l-th layer, H the number of attention heads, d the
dimension of hidden representations and Ql,h

i (Kl,h
j ) is the

Query-Key of the i-th (j-th) atom in the l-th layer h-th head,
and M ∈ RD × H is the projection matrix, making the
representation the same shape as multi-head SAM query-key
product results. Equation (5) denotes SAM with pair-to-atom
communication.

Attention(Ql,h
i ,Kl,h

j , V l,h
j ) =

softmax(
Ql,h

i (Kl,h
j )T

√
d

+ ql−1,h
ij )V l,h

j (5)

In this equation V l,h
j is the j-th atom in the l-th layer

h-th head. Uni-Mol lacks the capability to directly output
3D coordinates, which is crucial for tasks that require 3D
spatial information. Thus, a SE(3)-Equivariance head is used,
enabling direct output of 3D coordinates (equations 6 and 7).

x̂i = xi +

n∑
j=1

(xi − xj)cij
n

, (6)

cij = ReLU((qLij − q0ij)U)W (7)

In these equations n is the number of atoms, L the number
of layers in model, xi ∈ R3 the input coordinate of i-th
atom, and x̂i ∈ R3 the output coordinate of i-th atom,
ReLU(y) = max(0, y) is Rectified Linear Unit, U ∈ RH×H

and W ∈ RH×1 are the projection matrices to convert pair
representation to a scalar.

1) Pre-training: Our pre-training data-set consisted
of approximately 19 million molecules, sourced from
multiple public data sets. To obtain the 3D conformations,
a combination of ETKGD [29] and Merck Molecular Force
Field optimisation [30] from RDKit tool [31] was used to
randomly generate ten conformations for each molecule. For
each molecule, a special atom [CLS] is added to represent
the entire molecule, with its coordinate being the centre of
all atoms. Two additional heads were used to recover the
correct spatial positions. The first head, the pair-distance
prediction head, uses the pair representation to predict the
correct Euclidean distances of the atom pairs with corrupted
coordinates. The second head (coordinate prediction), utilises
the SE(3)-Equivariance coordinate head to predict the correct
coordinates for the atoms with corrupted coordinates.

2) Fine-tuning: To maintain consistency with the pre-
training process, the same data pre-processing pipeline was
employed during fine-tuning. For molecules, multiple random
conformations can be generated in a short time, making it
possible to use them as data augmentation during fine-tuning
to enhance performance and robustness. Where 3D conforma-
tions could not be generated, the molecular graph was used
as a 2D conformation. Also, the [CLS] mean representation
of all atoms (entire molecule), was used in conjunction with
a linear head to fine-tune on downstream tasks.

B. Information-geometric Attribute Optimisation

Broadly, we characterise our MOO problem as: (1) Given a
set A of relevant attributes which can be ascribed to specified
compounds (assumed to have domains ranging through
real-valued intervals); a subset Aopt ⊆ A of those attributes
which must be optimised (values must be minimised or
maximised); a subset Aconstr ⊆ A of those attributes which
define constraints, such that for each attribute Ac ∈ Aconstr

we have defined two values vmin
c , vmax

c , vmin
c ≤ vmax

c ;
and a problem space comprising compounds considered as
candidate solutions for the problem, where all compounds
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are published in large, public data-sets such as PubChem
[32]; (2) Find a set of compounds which are sufficiently
good approximations of compounds that optimise attribute
values in Aopt and whose attribute values for those attributes
Ac ∈ Aconstr belong to the interval [vmin

c , vmax
c ].

To suitably search the problem space we have used the
Similar Property Principle. Specifically, we use the Tanimoto
similarity [33], based on the concept of molecular fingerprints
[34] based on features vectors, listing selected substructures
and connections between substructures such that a specific
compound can be characterised as a binary vector indicating
presence or absence of each feature in the compound. The
Tanimoto similarity index between compounds Ma and Mb,
is defined by equation 8:

Ta,b =
c

a+ b+ c
(8)

In this equation a is the number of features in fingerprint
Ma, b the number of features present in fingerprint Mb, and
c the number of features present in both fingerprints. Herein,
we refer to NNA

a,b as the similarity between compounds
Ma and Mb based on the measure developed for attribute
A. To search for near-optimal compounds given specified
attributes Aopt and Aconstr, we use an algorithm inspired
by Multi-objective Covariance Matrix Adaptation Evolution
Strategy (MO-CMA-ES) [35], adapted to our non-parametric
problem space.

Experiments start with an arbitrary seed compound M0

in the problem space. Given a generic threshold T̂ , we
retrieve from the problem space the set of compounds M0 =
{M : Tf(M0),f(M) ≥ T̂}, where, f(Mi) is the fingerprint
of compound Mi, and M0 ∈ M0. For each Mi ∈ M0,
we check if the constraints defined for attributes in Aconstr

are satisfied, and build M̃0 ⊆ M0 containing only the
compounds that satisfy all constraints. From these, we build
the Pareto front of candidate solutions which comprise a Pareto
equilibrium considering all attributes in Aopt, whose values are
estimated based on specialised similarities NN

Ap

f(Mi)
,Mi ∈

M0, Ap ∈ Aopt. Thus, this builds the initial solution set
S0 = {Mi : Mi ∈ Pareto front}. Given a specified population
size λ, we select at random M01, ..., M0λ from S0 and,
for each compound, repeat the procedure above to build
solution sets S01, ..., S0λ, and then the overall solution
set S1 = ∪λ

j=1{S0j}. This procedure is repeated to build
S2,S3, . . . , until a stability criteria is reached ( |Sk+1|

|Sk| ≈ 1).
To avoid local optima, MO-CMA-ES also includes a growth
factor Ĝ > 1 for λ (Equations 9, 10):

If
|Sk+1|
|Sk|

< 1, λ → λ× Ĝ (9)

If
|Sk+1|
|Sk|

> 1, λ → λ

Ĝ
. (10)

Epoch Non-Toxic Toxic Overall 50/50

1 55.2 86.3 55.6 70.8
2 73.2 72.0 73.2 72.6
3 84.2 58.5 83.9 71.4
4 91.3 38.4 90.6 64.9
5 90.3 42.1 89.7 66.2
6 94.6 28.7 93.7 61.6
7 96.0 25.9 95.1 61.0
8 93.8 32.3 93.0 63.1
9 96.1 22.9 95.1 59.5

10 96.2 23.2 95.2 59.7

TABLE I: Method (section II) classification accuracy (%). Overall:
entire data-set. 50/50: considers combined means for Non-Toxic and
Toxic estimates. Bold highlights highest accuracy for all criteria.

III. EXPERIMENTS AND RESULTS

Our goal is chemical product design for environmental
sustainability, thus our optimisation attributes are toxicity, to
be minimised thus reducing de novo product environmental
impact, and synthetic accessibility, to be maximised to
reduce production costs. We predicted the aquatic toxicity of
molecules as classified by the Globally Harmonised System
of Classification and Labelling of Chemicals (GHS) [36].
We focused on aquatic toxicity given the many molecules
classified according to this attribute. To focus experiments,
we limited our analysis to the development of detergents for
domestic use, where minimising aquatic toxicity is critical.
Aquatic toxicity is subdivided into two attributes: aquatic
acute toxicity and aquatic chronic toxicity. Both indicate
potentially lethal effects on the aquatic biome. Aquatic acute
toxicity is defined as lethal to aquatic life within 96 hours of
constant exposure, while aquatic chronic toxicity is defined
as lethal to aquatic life within 28 days.

This study’s molecule data-set was provided by a private
company1, and contains 251k molecules. Only two percent of
the data-set was previously classified with respect to aquatic
toxicity. Hence, our experiments merged acute and chronic
toxicity to increase training accuracy to obtain a predictor
for unclassified molecules. To ensure robust experimental
evaluation, the training data-set was partitioned into training,
validation, and testing subsets using a scaffold-split strategy,
with an 80 − 10 − 10 ratio, respectively. The scaffold-split
approach is based on the molecular scaffold of the compounds
and is considered more challenging than a random split
strategy. To address the imbalance in the number of toxic
and non-toxic molecules, we applied random oversampling
to the toxic molecules in training set, resulting in improved
method accuracy. We trained 20 replications of the method
(with different hyper-parameters), where table I presents test
results from the best performing version (highest combination
of toxic and non-toxic accuracy, bold in table I).

1https://www.smarterx.com/
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A. Information-geometric Optimisation
Empirical results, for optimising compound attribute values,

are reported considering the following criteria:

(1) Robustness with respect to choice of seed compound
M0: it is expected that similar seed compounds lead to
similar optimised compounds. We have selected two groups
of compounds, each containing similar compounds where
compounds in different groups were dissimilar (given
Tanimoto similarity). As expected, compounds within the
same group led to the same optimised solution set of
compounds, and each group led to a different solution set.

(2) Sensitivity with respect to the search space threshold T̂ .
Results indicate solutions originating from higher T̂ values
are embedded in those originating from lower T̂ values
(where lower T̂ values induce larger search spaces).

(3) Sensitivity with respect to population size λ: smaller
values of λ induce more focused solutions requiring more
cycles to reach stability, building solutions further from the
seed compound than those gotten with larger λ values. Results
indicate that solutions originating from smaller λ values are
embedded into those originating from larger λ values.

(4) Sensitivity with respect to attributes to be optimised:
more attributes increase solution set sizes, given that more
attributes means more difficulty finding dominated solutions.
Results indicate that if the sets of optimising attributes A and
B are such that A ⊆ B, then the corresponding solution sets
SA and SB are such that SA ⊆ SB . Also, the selection of
attributes constitutes a useful tool to control the traversal of
the search space to find effective solution sets.

Experiments apply our method (section II) to estimate
toxicity of compounds in solution set S1. Specifically, to
simultaneously optimise accuracy to identify toxic and
non-toxic compounds. Results indicate the only compound
to be ruled out of S1 is CCCCCCCC(CCCCCCC)COS(=O)(=O)O,
highlighted as underlined text in table 2. We observe that this
compound is on the fringe of the solution set S1, featuring
the minimal value of XLogP. This compound is not registered
as toxic in PubChem, indicating in high probability it was
not laboratory tested, and thus the efficacy of our method for
detecting potentially toxic compounds.

Experiments use the PubChem [32] database, specifically
considering laundry detergents and two defining attributes.
First, XLogP which measures the ratio between lipophilicity
and hydrophilicity of a compound and when maximised
provides us with an indication of low toxicity and good
cleaning properties. Second, Molecular Complexity which
measures the size and structural complexity of a compound
and when minimised provides us with an approximate
indication of synthetic accessibility (level of difficulty to
chemically synthesise a compound where high structural

complexity indicates a likely low synthetic accessibility).
Additionally, to further gauge the optimisation efficacy
of our method, we include a Molecular Weight attribute
to be minimised (to increase likelihood of high synthetic
accessibility). Experiments using our optimisation constraints
(section III-A) are described in the following.

1) Sensitivity with respect to M0: As source compounds
(M0), we used groups described by a patented detergent [37]:

• Group 1: Methylhexadecyl hydrogen sulphate isomers:
CCCCCCC(C)CCCCCCCCCOS(=O)(=O)O;
CCCCCCCCC(C)CCCCCCCOS(=O)(=O)O;
CCCCCCCCC(CCCCCC)CCOS(=O)(=O)O.

• Group 2: Methylhexadecanol isomers:
CCCCCCC(C)CCCCCCCCCO;
CCCCCCCCC(C)CCCCCCCO;
CCCCCCCCC(CCCCCC)CCO.

Stability was reached in solution set S1 for both groups
(tables 2 and 3). These results are also presented as
Complexity versus XLogP graphs (figure 2, top left, top
right) depicting the Pareto fronts of each solution set.
These results were obtained with T̂ = 0.98 and λ = 10.
Solution sets were identical for compounds within each group.

2) Sensitivity with respect to T̂ : The same experiment (1)
was repeated with T̂ = 0.95 (λ = 10) for the first compound
in Group 1. Figure 2 (bottom left) presents results including
compounds obtained with T̂ = 0.98. Results indicate that
stability was reached only in solution set S4. With the
exception of a single compound obtained with T̂ = 0.98, all
compounds obtained with T̂ = 0.98 were also obtained with
T̂ = 0.95. Compounds in the final solution set obtained with
T̂ = 0.95 were significantly different from those obtained
with T̂ = 0.98. The solution set obtained with T̂ = 0.98
contained 10 compounds, whereas the solution set obtained
with T̂ = 0.95 contained 43 compounds.

3) Sensitivity with respect to λ: Experiment (1) was again
repeated with λ = 7 (T̂ = 0.95) for the first compound in
Group 1. Results (figure 2, bottom right), indicate stability
was reached only in solution set S6. With the exception of
five compounds obtained with λ = 7 (not present in solutions
gotten with λ = 10), both solution sets coincided.

4) Sensitivity with respect to attributes: This experiment
used the seed compound M0 as the first compound in Group
1, T̂ = 0.98 and λ = 10, and the following attributes
for optimisation: XLogP (to be maximised); Molecular
Complexity (to be minimised); and Molecular Weight (to be
minimised). Figure 2 (top left) presents results where seven
additional compounds were selected given the additional
attribute to be optimised. Figure 1 presents the Pareto front
for this case, where additional compounds are highlighted in
a different colour.
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Compound XLogP CP

CCCCCCCC(CCCCCCC)COS(=O)(=O)O 6.6 295
CCCCCCCCCCCCC(C)CCOS(=O)(=O)O 6.8 309
CCCCCCCCC(CCCCCCCC)COS(=O)(=O)O 7.7 319
CCCCCCCCCC(CCCCCCCCC)COS(=O)(=O)O 8.8 344
CCCCCCCCCCC(CCCCCCCCCC)

COS(=O)(=O)O 9.9 370
CCCCCCCCCCCC(CCCCCCCCCCC)

COS(=O)(=O)O 11.0 395
CCCCCCCCCCCCC(CCCCCCCCCCCC)

COS(=O)(=O)O 12.0 421
CCCCCCCCCCCCCC(CCCCCCCCCCCCC)

COS(=O)(=O)O 13.1 447
CCCCCCCCCCCCCCC(CCCCCCCCCCCCCC)

COS(=O)(=O)O 14.2 473
CCCCCCCCCCCCCCCC(CCCCCCCCCCCCCC)

COS(=O)(=O)O 14.7 515

TABLE II: Solution set for all Group 1 molecules, stabilised after
one iteration (S1). CP: Complexity, XlogP: Section III-A.

Fig. 1: Pareto front: Compounds highlighted in grey are additional
compounds given Molecular Weight as another attribute.

Compound XLogP CP

CCCCCCCC(CCCCCCC)CO 7.0 120
CCCCCCCC(CCCCCCC)CCO 7.7 131
CCCCCCC(CCCC)CCCCCO 7.8 134
CCCCCCCCC(CCCCCCCC)CO 8.1 140
CCCCCC(CCCC)CCCCCCCO 8.3 145
CCCCCC(CCCCC)CCCCCCCO 8.6 146
CCCCCCCCC(CCCCCCCC)CCO 8.8 151
CCCCCCCCCC(CCCCCCCCC)CO 9.2 161
CCCCCCCCCC(CCCCCCCCC)CCO 9.9 172
CCCCCCCCCCC(CCCCCCCCCC)CO 10.3 182
CCCCCCCCCCC(CCCCCCCCCC)CCO 11.0 194
CCCCCCCCCCCC(CCCCCCCCCCC)CO 11.3 204
CCCCCCCCCCCCCCCCCCCCC(C)CCO 11.5 226
CCCCCCCCCCCCC(CCCCCCCCCCCC)CO 12.4 227
CCCCCCCCCCCCCC(CCCCCCCCCCCCC)CO 13.5 250
CCCCCCCCCCCCCC(CCCCCCCCCCCCC)CCO 14.2 262
CCCCCCCCCCCCCCC(CCCCCCCCCCCCCC)CO 14.6 273
CCCCCCCCCCCCCCC(CCCCCCCCCCCCCC)CCO 15.3 286

TABLE III: Solution set for Group 2 molecules and stabilised after
one iteration (S1). CP: Complexity (Section III-A.).

Fig. 2: Top Left: Pareto front for Group 1 molecules. Top Right:
Pareto front for Group 2 molecules. Lower Left: Pareto front for one
molecule in Group 1, λ = 10, T̂ ∈ {0.95, 0.98}. Lower Right: Pareto
front for one molecule in Group 1, T̂ = 0.95, λ ∈ {7, 10}.

Such results provide expert chemists with the possibility
to semi-automate the search process via directing search to-
wards desirable (optimal) compounds. Overall, results indicate
that our proposed methods, specifically combining geometric
deep-learning and multi-objective optimisation (sections II-A,
III-A) for molecular property prediction and optimisation, is
a promising approach to provide chemical product designers
with a useful computational molecular and optimisation design
tool. Results also indicate that the choice of the appropriate,
attribute-dependent similarity measures between compounds,
seed compound, quantity and quality of attributes to be opti-

mised, and choice of values of hyper-parameters are crucial for
the quality of identified de novo compounds (section III-A).
Specifically, we have identified preliminary empirical evidence
that frequently used molecular descriptions such as SMILES
can be too coarse to enable proper classification of molecules
according to attributes of interest. We applied Uni-Mol [17]
to estimate aquatic toxicity of compounds, obtaining accuracy
considered acceptable by domain experts. Uni-Mol yielded an
accuracy (table I) comparable with the accuracy and reliabil-
ity of existing methods [2], [38]–[40], where such methods
remain disadvantaged by costly trial and error optimisation.
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Computational results analysis also identified at least one
compound considered potentially toxic to the environment
(section III-A1). However, this study’s main contribution was
combining Uni-Mol with MO-CMA-ES to demonstrate a novel
computational tool for searching a chemical space for optimal
compounds (in a search space characterised by compounds
with partially known attribute values).

IV. CONCLUSIONS AND FUTURE WORK

This study introduced a new computational chemistry tool
to automate molecular design while satisfying multiple con-
straints of new molecular compounds, where molecular at-
tribute values are only partially known. Specifically, our
method combined Uni-Mol, a GNN to estimate attribute values
of compounds given their 3D molecular structure, and MO-
CMA-ES, a multi-objective evolutionary search method that
delivers a Pareto optimal solution set of compounds. Results
indicated the efficacy of this method for discovering new
compounds with optimised attributes (toxicity and synthetic
accessibility in this study). As future work, we plan further
empirical validation of this method as a research support tool
for de novo chemical synthesis, and potential application to
automated synthesis of novel molecular compounds.
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