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Abstract 

Collective robotics refers to the field of robotics that focuses on the coordination and collaboration of 
multiple agents to perform a task or solve a problem. The ability to automatically design controllers for 
such agents in a collective system is an attractive proposition. In this thesis we investigate the impact on 
performance of combining MAP-Elites with HyperNEAT while varying the evolutionary search directive 
between an objective and non-objective search, and a hybrid approach. We make use of Keep-away, a 
simulated collective robotics task as a case study. HyperNEAT is an evolutionary method that makes use of 
indirect encoding to evolve agents. Whereas in typical evolutionary methods, only the fittest agents survive 
to future generations, the inclusion of MAP-Elites allows not only the fittest agents but also those that 
demonstrate unique behaviour to survive. By retaining these elite agents in the population, we expect to 
increase the chances of exploring novel, yet potentially high-performing regions of the search space. To 
evaluate these methods, we produced controllers for Keep-Away agents whose aim is to retain ball 
possession in the presence of opposing agents. This research report sheds light on how the combination of 
these methods affects the agents' performance and their ability explore the behaviour search space. The 
insights gained from this study will be valuable for researchers working to understand the value and 
applicability of combining illumination algorithms such as MAP-Elites with objective and non-objective 
search for gaining performance in Keep-away and similar tasks. 

Keywords: Keep-away soccer, MAP-Elites, HyperNEAT, hybrid search, performance evaluation, 
neuroevolutionary algorithms, evolutionary computation, novelty search, illumination algorithm, collective 
robotics. 
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1 Introduction 

This research belongs to the fields of Artificial Intelligence and Evolutionary Robotics. Artificial Intelligence 
(AI) may be broadly described as capability of a machine or computer system to imitate human intelligence. 
It has been popularly described by Russell, et al. [4]. as “the study of agents that receive percepts from the 
environment and perform actions”. Evolutionary Robotics (ER) is the field in which the principles of natural 
evolution [5] are applied to the design of robots with AI. A particular research focus in ER is neuroevolution, 
in which neural network-based controllers are evolved computationally. The overarching objective within 
the domain is to create agents with the ability to solve problems in a general context. 

The neuroevolutionary training process we employ is based on the evolutionary principle of survival of the 
fittest [5]. The fittest agents in a large population survive and propagate to produce new agents with 
combinations of their traits, while the weakest agents are removed from the population. 

Many benchmark tasks in robotics have been established as testbeds for AI research such as Pole-balancing 
[6], Knight-Joust [7], and the case study task selected for this research, RoboCup Keep-away Soccer (Keep-
away) [3], a collective robotics task. These tasks provide domains for incremental learning because 
methods developed for solving these benchmark tasks are expected to be applicable in general.  

The Keep-away task requires the implementation of an AI method that trains simulated soccer agents to 
maintain possession of a ball on a virtual soccer field in the presence of opposing soccer agents who aim to 
intercept the ball and thus end the game. 

In this research, the agents will be controlled by an Artificial Neural Network and trained with a 
Neuroevolution method. Previous work has shown that HyperNEAT is an appropriate neuroevolutionary 
technique for Keep-away soccer [7, 8]. HyperNEAT can be directed by a host of different optimisation 
methods which may be broadly categorised as objective and non-objective based search. In this research, 
we employ Novelty Search [9] as our non-objective search directive. MAP-Elites falls into a class of methods 
known as illuminating algorithms which aim to illuminate the feature space for a problem by finding and 
mapping out the elite solutions [10]. 

This research builds upon a subset of previous work by Didi [8] in which the researchers conducted 
experiments on the same task with HyperNEAT directed by objective and non-objective-based search. 
Specifically, previous experiments investigated Objective-based search, Novelty search, Hybrid novelty-
objective-based search, Genotypic novelty search (GNS) and Hybrid GNS-objective-based search [7]. 

This research aims to compare and analyse the difference in the performance of Objective-based search, 
Novelty-based search, and Hybrid novelty-objective-based search with and without MAP-Elites 
incorporated into the evolutionary process to evaluate the hypothesis that MAP-Elites will improve 
behaviour quality of evolved Keep-away agents for all mentioned search methods. 

1.1 Primary Research Objectives 

The primary objective of this research is to assess the value of incorporating an illumination algorithm into 
objective, non-objective and hybrid search in the context of multi-agent systems. We will evaluate the 
impact on task performance and search space exploration Keep-away soccer when combining MAP-Elites 
with Novelty search, objective search and hybrid novelty-objective search.  

1.2 Importance of the research 

This research aims to make an incremental contribution to this goal by providing the following benefits: 

 Add to the understanding of MAP-Elites as it applies to the evolution of controllers for collective 
robotic tasks. 

 Enable validation of future research by providing experimental data for researchers to make use 
of in their work. 

 Enable researchers performing similar work to begin experimenting sooner by providing software 
to the research community to build upon in their work. 



 

1.3 Existing research 

Recent work in ER has demonstrated the applicability and performance of HyperNEAT in Keep-away soccer 
where Nitschke, et al. [7] used a variant of HyperNEAT called HyperNEAT Bird’s Eye View (HyperNEAT-
BEV) [11] to encode the geometric properties of the task.  

Nitschke, et al. [7] compared various Evolutionary Algorithms including objective-based search (fitness 
function) and Novelty search [12] as well as a hybrid of the two (Hybridized novelty and objective-based 
search). Novelty search is the process of favouring the diversity of phenotypes during evolution. Novelty 
search has grown in popularity for use in directing evolution towards diverse phenotypes instead of only 
towards a better fitness value as is done in traditional objective-based search. Recent work has added to 
the growing weight of evidence that this process improves the quality of evolved behaviours [7].  

In recent years the MAP-Elites algorithm has attracted attention and interest in the field of Evolutionary 
Computation for its potential in improving upon Novelty search [10]. Most notably, the algorithm has been 
demonstrated to be effective in generating widely diverse walking gaits for hexapod robots [13]. Currently, 
to the best of our knowledge, no research exists in which MAP-Elites has been applied to the Keep-away 
soccer task. 

1.4 Research contributions 

This research makes several notable contributions. Firstly, it replicates key experiments conducted by Didi 
[8] and Nitschke, et al. [7] specifically focusing on their investigations into Novelty Search (NS), Objective 
Search (OS), and Hybrid Novelty-Objective-Based Search (ONS) within the context of Keep-away Soccer. 
Additionally, this research implements MAP-Elites as a method of search space illumination for HyperNEAT 
evolved controllers. The performance of HyperNEAT is evaluated, considering both scenarios with and 
without the integration of MAP-Elites, across OS, NS, and ONS-based searches. Moreover, the findings of 
this research are disseminated to add valuable insights to the existing body of evidence regarding the 
practicality and effectiveness of neuroevolutionary techniques, with a specific emphasis on the role of MAP-
Elites. Lastly, the research contributes to the academic community by sharing the developed software 
through a published codebase. 

  



 

2 Background 

This chapter introduces and describes the key concepts related to the research topic. The first key concept 
introduced is RoboCup and the derived subtask known as Keep-away, as the benchmark testbed utilised 
for generating research data. The next piece of background concerns key concepts in Artificial Intelligence 
that are applied to collective robotic controller tasks such as Keep-away. Following this, evolutionary 
algorithms are introduced, and this is followed by more detail regarding HyperNEAT, MAP-Elites, and 
various search directive approaches to be utilised in the research described in later chapters.  

2.1 RoboCup 

In recent years, various challenges have emerged as leading areas for practical research in Artificial 
Intelligence (AI) and Evolutionary Robotics (ER). The idea of a robot playing soccer was first mentioned by 
Mackworth [14] in 1993. At around the same time, a group of Japanese researchers decided to launch a 
robot competition which was eventually named the Robot World Cup Initiative, or RoboCup for short [15]. 
The first official RoboCup games and conferences were held in 1997 [3, 16], and since then, the task has 
been adopted by many top research groups as a benchmarking testbed for their research [3, 7, 15-24]. The 
final goal of the initiative remains to beat a World Champion soccer team by the year 2050 [3]. However, 
this goal remains far off as the community has many challenges to face including hardware, and AI to 
control the hardware before such an accomplishment would be possible. 

2.1.1 RoboCup as an AI benchmark 

The game of soccer is characterised by a massive state space [16, 22], and partial observability [25]. The 
field of play in its most trivial form is a grid of 𝑛 × 𝑛 positions [17] wherein agents must track the distance 
and angle from themselves to the ball, the boundaries, the cooperating agents, and their opponent agents. 
RoboCup has drawn comparisons to other benchmarks such as Chess wherein IBM’s Deep Blue defeated 
Kasparov, a human grandmaster [26]. The two games are compared in Table 1 according to their 
Environment, State Change, Information Accessibility, Sensor Readings and Control. While Deep Blue was 
able to defeat Kasparov via extensive search techniques (Brute Force methods), it is clear from the 
comparison that RoboCup is a vastly more challenging task. 

2.1.2 Keep-away 

To reduce the RoboCup task from the full game of soccer to something approachable via incremental 
learning, researchers have reduced the game to certain subtasks such as “Keep-away” [24] where two sets 
of agents compete for possession of a ball. The first set of agents called the keepers aim to keep possession 
of the ball by either holding or passing it to another keeper, while the second set of agents called the takers 
aim to intercept a pass or force the ball out of play. The Keep-away field with keeper and taker players is 
illustrated in Figure 3. In the Keep-away subtask performance is usually measured as the average amount 
of time that a keeper team can retain possession (measured in seconds) during a benchmark session [24] 
which we will refer to as Average Hold Time. A second measure of performance is related to the time taken 
to train an agent to perform at a preselected threshold level [22]. 

2.1.3 Features of the Keep-away task 

Stone et al [17] who first set up the Keep-away task defined it with the injection of random noise to emulate 
the noisy environment expected in reality.  This feature of the task presents a particular challenge in that 
methods to develop controllers must be capable of dealing with noise. Di Pietro, et. al [21] have pointed out 
that Evolutionary Algorithms (EA) are applicable to the noisy nature of the Keep-away environment. 
Further support is found in Darwen’s [27] discussion on how evolutionary algorithms are known to work 
well in noisy and unknown domains. 

Another feature of the Keep-away task is that it is a complex collective behaviour task [7] requiring multiple 
keepers to cooperate in completing their goal of maximising the time they collaboratively retain ball 
possession. There are several features of collective behaviour tasks that contribute to the challenge of 
solving them. These reasons have been summarised by Didi [8] as the curse of dimensionality of the state  



 

 

space, a non-stationary environment, partial environment observability and complex collective behaviour 
interaction dynamics.  

The curse of dimensionality results from the tendency of the solution state space to exponentially increase 
when multiple agents are involved due to the interdependence between each of their properties and actions 
on each other. For example, two agents with two variables each acting on each other would result in a state 
space of order 2ଶ, while three agents would result in a state space of order 2ଷ, etc. The non-stationary 
environment is a result of other active agents being part of the environment. Thus, when they take action, 
the environment changes. Partial environment observability results from each agent being only able to 
observe some of the environment. For example, in Keep-away, keepers can only partially observe their 
position, the other players' positions, and the position of the ball due to noise in the system, and they cannot 
observe the internal states and decision-making process of takers. 

The complex collective behaviour interaction dynamics are a result of each action taken by an agent 
impacting the environment and hence the decision-making of other agents in the environment, with a 
continuous knock-on effect. 

A further feature of the Keep-away task is the apparent presence of a fractured decision space [2, 8], 
meaning that the best action an agent can take will vary discontinuously as it moves from state to state. 
Figure 1 illustrates the challenge of a fractured decision space, given that significantly more complex 
network structures would be required to deal with more than one discontinuous region of fitness in the 
search space.  

2.1.4 Rules of Engagement 

The Keep-away field is initialised with keepers and takers arranged as in Figure 3 and the system is reset 
to this condition whenever the ball leaves the boundary of the field, or a successful intercept is made. An 
interception occurs when an attacking agent moves within a predefined distance of the ball. 

Researchers increase the task complexity by changing the size of the field of play as well as the number of 
keeper and taker agents, typically beginning with 3 vs. 2 (keepers vs. takers) and increasing gradually to 6 
vs. 5.  

Keeper agents can make high-level decisions including holding or passing the ball, as well as moving to the 
ball, or moving to an open space on the field. The lower-level actions that enable these moves (such as 
kicking the ball or turning) are handled by the simulation framework. These actions are selected for 
execution every 100ms long simulation cycle. During each simulation cycle, an agent receives inputs and 
acts independently in an asynchronous fashion since there is no communication between agents. The 
takers make use of a heuristic control strategy as given in Algorithm 1 [8] in which two agents are selected 
arbitrarily to rush towards the ball’s estimated position. The rest of the takers estimate open positions 
between the keepers and attempt to block passes in this space.  

 

 Chess RoboCup 
Environment Static Dynamic 
State Change Turn taking Real time 
Information Accessibility Complete Incomplete 
Sensor Readings Symbolic Nonsymbolic 
Control Central Distributed 
Table 1: Contrasting features of Chess and RoboCup. While Deep Blue was able to defeat Kasparov via extensive search 

techniques (Brute Force methods), it is clear from the comparison that RoboCup is a vastly more challenging task where 
brute force methods will not be effective. Table adapted from Kitano, et al. [3]. 



 

 

Algorithm 1: Taker agent heuristic control strategy 
1: Initialize the position of agents; assigns IDs 
2: read the taker agent’s ID 
3: repeat 
4:  foreach time_step ϵ episode_duration do 
5:  if agent_ID <= 2 then 
6:  next_position ← predict(next_ball_position) 
7:   policy ←moveTo(next_ball_position) 
8:  else agent_Id > 2 
9:  next_position ← predict(most_Open_Space) 
10:  policy ← moveTo(most_Open_Space) + Intercept(Ball ) 
11: until Terminal_State 

2.2 Artificial Neural Networks 

Artificial Neural Networks (ANN) have existed since the 1980s [28] and have grown in popularity in recent 
years thanks to advances in affordable processing power [29]. ANNs are vaguely inspired by our 
understanding of the human brain but are essentially nonlinear statistical models [29]. Figure 2 depicts an 
ANN in its simplest form as a single hidden layer feed-forward neural network with an input layer (𝑋𝑛), a 
hidden layer (𝑍𝑛), and an output layer (𝑌𝑛). ANN are characterised by their topology or architecture of 
nodes, their activation functions, and their weights and biases.  

 

Figure 1: Illustrations depicting the amount of network structure required to bound isolated sections of a 2D 
decisions space. Figure (a) depicts how a single layer divides the decision space in half. Figure (b) depicts how a 

triangular section of the decision space can be bounded with the addition of three hidden nodes. Figure (c) depicts 
the significantly more complex network structure with two hidden layers and 8 nodes that would be required to 

bound two separate triangular regions. Figure taken from Kohl, et al. [2]. 



 

Several types of ANNs have been developed to solve different problems, notable are the Recurrent Neural 
Network (RNN) and the Convolutional Neural Network (CNN). RNNs key feature is that outputs are fed 
back into earlier layers of the ANN to capture certain dynamics such as those found in cyclical systems [30]. 
CNNs make use of convolution operations which attempt to mimic the biological visual cortex and a major 
area of application for CNNs is in image recognition and computer vision due to the way they operate. 

An ANN is typically created by first designing its topology and initialising it with random starting weights 
and biases, and then training the ANN with the use of back-propagation which is a mathematical technique 
for propagating modelling errors backwards through the network iteratively, usually with the use of 
gradient descent until a satisfactory error threshold is reached or no more improvement is being made 
[29]. 

2.2.1 Artificial Neural Networks in RoboCup 

Deep Imitation Learning with the use of Long-Short Term Memory (LSTM) ANNs have been used to tackle 
the RoboCup Half-Field-Offence subtask [18]. Here, agents are trained by watching teachers perform the 
task. With the use of this technique, researchers were able to match teacher performance. Similar work by 
Raza, et al. [25] showed positive results for a defensive subtask with the use of imitation and a classification 
ANN model, however, they found that a Decision Tree was considerably faster to train while providing 
comparatively good performance. 

2.3 Reinforcement Learning 

A growing area of interest that has gained significant momentum in recent years is Reinforcement Learning 
(RL) in which agents are rewarded or penalised based on certain behaviour characteristics [31]. RL 
typically makes use of Q-functions in the form Q(s, a) where a reward is calculated based on taking an action 
(a) while in state (s) [31].  

One feature of RL that sets it apart from traditional supervised learning approaches is that it does not 
require a dataset of correct answers. In supervised learning, an error term can be calculated based on the 
provided answer set. In RL the agent (for example, an ANN) will typically be initialised with a random 
topology and parameter set. The first stage of training then comprises the agent taking random actions 
which in return produce a reward score. RL typically requires a high number of epochs (training iterations) 
before it stumbles upon some actions that result in a positive reward. The reward function must be 
carefully designed to enable the agent to continue to improve its reward, but not to prevent it from 
exploring new possibilities [22, 32]. 

 
Figure 2: Diagram illustrating a feed-forward neural 

network with a solitary hidden layer. Figure taken 
from Friedman, et al. [37] 

 
Figure 3: RoboCup Keep-away field illustrating takers, 
keepers, ball and field. Figure taken from Stone, et al. 

[22] 



 

Common techniques employed by RL are Markov Decision Processes, Monte Carlo methods, Dynamic 
Programming, linear SARSA(𝜆) and most recently Temporal Differences [22, 31] which have shown 
impressive results in the RoboCup problem. 

2.3.1 Reinforcement Learning in RoboCup 

One such example of RL in the RoboCup problem is described in Stone, et al. [22] where they used the Semi 
Markov Decision Process (SMDP) version of the SARSA(𝜆) algorithm [31] to find and maximise the 
cumulative reward. Temporal Differences were used by Taylor, et al. [32] where they achieved a mean hold 
time of between 12 and 40 seconds for non-deterministic and deterministic tasks respectively. Taylor, et 
al. [32] compared this method to the use of the NEAT algorithm (See Section 2.6) which they found 
performed significantly better. 

One of the major weaknesses of RL is its initial training performance [33]. This weakness has been 
addressed in part by the application of Transfer learning. 

2.4 Transfer Learning 

Transfer learning (TL) [11, 34], otherwise referred to as policy transfer or behaviour transfer, builds on the 
intuition that many tasks have similarities, and certain agent skills learned in a source task may be 
transferable to a similar target task [7]. Typically, in TL, the final few layers of an already trained ANN will 
be removed and retrained with the new more complex task data.  

2.4.1 Transfer Learning in RoboCup 

This concept is often used to transfer learning from a simple to a more complex version of a task as has 
been the case with Nitschke, et al. [7], Taylor, et al. [34] who have applied transfer learning to the RoboCup 
Keep-away subtask. Nitschke, et al. [7] trained an agent in a simple 3v2 game of Keep-away and then 
successfully transferred that learning to increasingly complex versions of the same game in which player 
numbers increased to 4v3, 5v4 and 6v5.  

2.5 Evolutionary Algorithms 

Back-propagation is the most widely used training technique for ANNs [29] and RL methods have shown 
great promise in application [31], but recent work by Buk, et al. [35] Stanley, et al. [36]; Doncieux, et al. 
[37]; Nitschke, et al. [7]; Pietro, et al. [21]; Stanley, et al. [38]; Taylor, et al. [32] has shown the benefits of 
Genetic Algorithms and Evolutionary Techniques.  

Evolutionary Algorithms are modelled loosely on Darwin’s theory of evolution [5] in which the most 
successful genotypes survive and the weakest are filtered out of the population. In EA, a problem is solved 
by starting with a random population of genotypes (solutions). From this population, selection takes place 
in which only the best genotypes survive. After this, crossover (reproduction) occurs in which genes from 
different pairs of genotypes are combined into offspring. Finally, mutation takes place when a random gene 
from certain offspring is changed randomly. This process repeats iteratively until an optimal solution is 
found [21].  This process is described algorithmically in Algorithm 2. 

Algorithm 2: Computational evolution 
1. Initialise a random population of solutions 
2. Evaluate solutions task performance through simulation 
3. Select solutions to reproduce based on fitness criteria 
4. Reproduce new solutions by combining features of surviving solutions  
5. Mutate genes in solutions (usually randomly) 
6. Repeat 2-6 
7. Conclude evolution once pre-determined conditions are satisfied, such as a time or fitness limit. 

 



 

2.5.1 Evolutionary Algorithms Applicability in Keep-away 

Pietro, et al. [21] have demonstrated the use of EA for training an agent for the Keep-away task and 
exceeded results from previous studies. They chose the methods due to the knowledge that EA work well 
in noisy and unknown domains [27], a characteristic of the Keep-away task. They used the same high-level 
actions that were originally designed by Stone, et al. [17] who introduced Keep-away as a benchmark 
testbed for machine learning research. In this research, Pietro, et al. [21] were able to demonstrate better 
performance than Stone’s, improving hold time to 24.8 seconds, compared to 12.8 seconds achieved by 
random decision-making in the agents. 

2.6 Neuro-Evolution of Augmented Topologies 

The popularity of ANNs and EA have given rise to Neuro Evolutionary (NE) techniques in which ANN 
weights and synapse connections are determined by EA instead of traditional methods such as back-
propagation or RL techniques. A breakthrough that helped to create progress in this research came by way 
of the algorithm known as Neuro-Evolution for Augmented Topologies (NEAT) [38] developed by Stanley 
et. al. [38] in 2002. 

NEAT is a method for developing and training ANNs with the use of Evolutionary Algorithms (EA) while 
solving the competing conventions problem which was a long-standing challenge in Neuro Evolution (NE) 
(the evolution of ANNs). Before NEAT was developed, Neuro-Evolution was typically used to evolve weights 
and synapses for predetermined ANN topologies. Angeline, et al. [39], Gruau, et al. [40] Yao [41] showed 
however that the topology of an ANN is significant to its performance. NEAT addresses this by not only 
evolving the weights and synapses but also providing a way for augmenting the network topology through 
evolution by adding new neurons and synaptic connections through complexification [38]. The NEAT 
method achieves complexification by starting with small, simple networks which it evolves into larger, 
more complex networks while maintaining features of both parents in the topology. 

This capability is a powerful advantage of the NEAT method because it provides a way to solve the 
Competing Conventions Problem, also known as the Permutations Problem commonly faced in NE [38]. 
This problem is characterised by damaged offspring due to duplicate genes with different encodings being 
propagated as illustrated in Figure 4. 

NEAT solves this problem through the implementation of speciation in which incompatible phenotypes 
are grouped into separate species. This is achieved through NEAT’s Historical Marking mechanism which 
enables the algorithm to keep track of evolving phenotypes using a global Innovation Number (GIN) 
assigned to each new synapse and neuron that is added to a network. Figure 5 illustrates how the 
algorithm uses this GIN to track network lineage and the order in which networks are evolved to create 
more diverse networks and protect innovation. The GINs are used during the crossover phase of 
evolution where the NEAT algorithm uses this information to ensure that offspring inherit only one of 
each unique synapse and neuron from its parent’s combined genetics. [38] 

One possible weakness and an open problem in the field is whether complexification can go too far and 
result in overly complex networks. However Stanley, et al. [38] argue that this is avoided through justified, 
incremental structural mutation in which only the useful structural additions survive.  

2.7 HyperNEAT and Compositional Pattern-Producing Networks  

Hypercube-based Neuro-Evolution of Augmenting Topologies (HyperNEAT) [36] extends NEAT by 
evolving Compositional Pattern-Producing Networks (CPPN)[1] with NEAT to determine the connection 
weights of a network substrate with a fixed topology that is in turn used to control agents or complete a 
task. The word “Hypercube” represents the typical multidimensionality of CPPNs. The advantage of this 
design is that the connectivity pattern of the substrate can directly map to the geometry of the solution 
space (e.g. the sensors and actuators of a robot) and remain unchanged, while evolution takes place on the 
CPPN with the freedom to complexify and update its topology. CPPNs are analogous to traditional ANNs in 
that they have similar topologies composed of neurons and synaptic connections with their associated  



 

 
Figure 4: The competing conventions problem. Figure taken from Stanley, et al. [33] The figure shows two networks 
that result in the same output even though they are composed in different arrangements of the same three neurons 
(A, B, C) and their synaptic connections. Performing single-point crossover would inevitably result in the loss of one 
of the three hidden neurons and its corresponding synaptic connections, leading to the emergence of a network that 

is either ABA without C or CBC without A. 

 

Figure 5: Aligning genomes with distinct network structures through the use of innovation numbers. Figure taken 
from Stanley, et al. [33]. Each block represents a genotype neuron with its GIN and an indication of which neurons it 
links to via synaptic connections (each of which has its own GIN not shown in the figure). Offspring are generated by 
aligning each GIN and randomly selecting from one of the parents if the GIN is represented in both, thus resulting in 

a more complex network which represents both parent’s innovations (neuron 6 from Parent 2, and synapse 3->5 
from Parent 1). 

 



 

 

weights. However, CPPNs differ in that typical ANN neurons all employ a single activation function (such 
as sigmoid or Gaussian functions), whereas CPPNs may use any variety of different activation functions in 
each node as illustrated in Figure 6. Patterns result in the output of CPPNs due to the function composition 
in which the output of each node is transformed by the function in the next node. The use of different 
functions can result in useful patterns of behaviour. For example, a sine function can introduce regular 
repetition, and a Gaussian function can introduce bilateral symmetry [8]. 

With the use of CPPNs, HyperNEAT can map the high dimensionality in a hypercube to a low dimensional 
substrate in the ANN topology. This characteristic makes the technique highly applicable to tasks such as 
Keep-away [7] because the field of play can remain the same as evolution runs its course and the CPPN is 
complexified in parallel to an unchanging substrate.  

2.8 Static Representation in Evolution 

Verbancsics and Stanley [11] have noted the value of being able to evolve the ‘intelligence’ in agents whilst 
leaving the domain in which the intelligence is applied unaltered. For example, in robotics, it is typical that 
a controller ANN will have nodes that map directly to the physical robot’s joints, actuators, etc. This means 
that the controller is limited in application to robots of the same physical makeup. It would be useful to be 
able to use the same controller with little adaption in a different robot that might have a similar objective 
but a different physical design.  

This concept applies strongly to the Keep-away and Robot Soccer tasks in general in that the physical 
makeup of the task changes when more players are added to the field, and when the size and dimensions 
of the field change.  

Thus, it is useful to be able to maintain a distinction between the properties of the task, and the evolving 
network. In the case of Keep-away, this principle has been applied as described in HyperNEAT in Keep-
away. 

Recent work in Evolutionary Robotics (ER) has demonstrated the applicability and performance of 
HyperNEAT in Keep-away where Nitschke, et al. [7] used a variant of HyperNEAT called HyperNEAT Bird’s 
Eye View (HyperNEAT-BEV) [11] to encode the geometric properties of the Keep-away task. The mapping 
of inputs to outputs by way of this approach is illustrated in Figure 7. This figure shows a Birds Eye View 
of the Keep-away field implemented for use with HyperNEAT where the input and output layer form a one-
to-one mapping of the field of play as a fully connected ANN with no hidden layers. 

 

 

 
Figure 6: Composition of functions as a graph. 
Figure taken from Stanley [1] Each node takes 
on the form of a potentially different activation 

function. 

 

 

 
Figure 7: Birds Eye View of the Keep-away field implemented 

for use with HyperNEAT where the input and output layer 
form a one-to-one mapping of the field of play as a fully 

connected ANN with no hidden layers. Figure taken from 
Verbancsics et. al. [9]. 



 

Nitschke, et al. [7] compared various EA methods including objective-based search (fitness function) and 
Novelty Search (NE) [12] as well as a hybrid of the two (ONS). NS is a special case of the Genotypic Diversity 
Method (GDM) [42] which is the process of favouring the diversity of phenotypes during evolution. NS has 
grown in popularity for use in directing evolution towards diverse phenotypes instead of only towards a 
better fitness value as is done in traditional objective-based search. 

Recent work has added to the growing weight of evidence that this process improves the quality of evolved 
behaviours [7]. A further contribution of the work by Didi [8] and Nitschke, et al. [7] was the application of 
TL to NE while TL had traditionally only been applied to RL. Didi [8] and Nitschke, et al. [7] found that  
“Hybridized novelty and objective-based evolutionary search used in company with policy transfer across 
increasingly complex collective behaviour tasks, results in significantly higher behaviour quality compared to 
other evolutionary search methods.”. Figure 8 shows the distribution of task performance for each of the 
various approaches used to train an agent for increasingly complex Keep-away tasks over 20 runs. The 
figure shows that the hybridized novelty and objective-based evolutionary search (ONS) consistently 
outperformed the competing approaches and that TL improved Task performance for ONS in all cases.  

2.9 Multidimensional Array of Phenotypic Elites (MAP-Elites) 

Multidimensional Array of Phenotypic Elites (MAP-Elites) is an illumination algorithm or quality diversity 
algorithm [43] that creates a map that shows the relationship between behaviour and performance along 
predefined behaviour-space dimensions. This algorithm’s core function is to create a map of high-
performing solutions (the elites) at each point in a behavioural space defined by behavioural dimensions 
[44]. This concept is illustrated in Figure 9 in which each elite is mapped to a discretised feature landscape. 

An early application of MAP-Elites was hypothesised for use in the control of robots that would benefit 
from “knowing” how to achieve optimal performance through varied behaviours. For example, if a hexapod 
robot were to lose two legs – there is considerable benefit in already knowing what the best (highest 
performing) movement strategy would be to still complete its mission [44]. 

The MAP-Elites algorithm is described in pseudocode in Algorithm 3 which has been adapted from Mouret, 
et al. [10] and Tarapore, et al. [44]. In this algorithm, x represents a candidate solution and thus 
performance(x) is its performance, each N behaviour_descriptor(x) is chosen by the user and represents.  

the chosen dimensions to be mapped into the feature-performance map. Each of these chosen dimensions 
are discretised based on the user preference, thus creating an N-dimensional grid where each cell 
represents a particular niche where elites may be recorded and preserved through evolution.  

There is significant overlap philosophically in the thinking behind MAP-Elites and Novelty search (2.10.2) 
which seeks novel behaviours. The difference with MAP-Elites is that it not only rewards novelty in 
evolution (albeit implicitly [44]), but maps out the relationship between objective performance and pre-
defined behavioural dimensions of interest, thus allowing users of this algorithm to find the best of each 
type of behaviour they are interested in (for example, the fastest, or most reliable).  

 

Figure 8: Average normalized maximum task performance for HyperNEAT variants. Figure taken from Nitschke, et 
al. [3]. The left column shows task performance with transfer learning (Policy Transfer) applied. Task performance 

is compared for Objective-Based (OS), Novelty Search (NS), Objective-Novelty hybrid (ONS), Genotypic Novelty 
Search (GNS), and Objective-GNS hybrid (GNS). 



 

 

2.9.1 Quality Metrics for MAP-Elites 

Four quality metrics were introduced by Mouret, et al. [10] and are summarised below.  

1. Global performance represents the proximity to the highest-performing solution across all runs. 
This is analogous to the performance of each solution compared to the highest possible 
performance discovered so far.   

2. Global reliability is the average performance of the filled cells or niches in the feature-
performance map (0 where cells are empty) across all runs for the same task.  

3. Precision (opt-in reliability) is the average performance of the filled cells or niches in the 
feature-performance map of a particular run.  

4. Coverage measures how many cells or niches of the feature-performance map a particular run of 
MAP-Elites can fill of the total possible.  

In addition to these metrics, Mailer, et al. [45] also considered the maximum performance, average 
performance and coverage of the maps during generation. In this research, we can consider maximum 
performance to yield similar results and give rise to similar conclusions as those gained from global 
performance, and we can consider precision to be an alternative version of global reliability that does not 
add value to our particular analysis.  

2.10 Evolutionary Search Variants 

Evolutionary algorithms are directed by an objective function that defines agent fitness; this fitness is then 
used in the selection process where only some agents survive to influence future generations. There are 
various ways to direct an evolutionary algorithm, and each approach has a major effect on the performance 
and behaviour of the agents produced. Eiben, et al. [46] have shown that the two main properties of 
evolutionary search approaches that drive the search process are exploration of the search space and 
exploitation of highly fit regions.  

In this research, we consider three approaches to direction in order to evaluate the effect of exploration 
and exploitation and a hybrid of the two. 

1. Objective-based search (OS) 
2. Novelty search (NS) 
3. Hybrid Objective-Novelty search (ONS) 

Objective-based search is comparatively strong in the exploitation of highly fit regions. Novelty search is 
comparatively strong in the exploration of the search space, and in some sense, these two methods 
represent the two extremes in the spectrum of search direction approaches. Hybrid Objective-Novelty 

Algorithm 3: A pseudocode description MAP-Elites 
procedure MAP-Elites 
1. ( 𝑃 ← 𝜃, 𝑋 ← 𝜃) 
2. for iter = 1 → I do 
3. if iter < G then 
4. x′  ← random_solution() 
5. else 
6. x  ← random_selection(X) 
7. x′  ← random_variation(x) 
8. b′ ← behavior_descriptor(x′) 
9. p′ ← performance(x′) 
10. if P(b′) =  𝜃; or P(b′) < p′ then 
11. P(b′) ←  p′ 
12. X(b′) ← x′ 
13. return feature-performance map 

(P and X) 

1. Create an empty, N-dimensional map of elites: (solutions X and 
their performances P) 

2. Repeat for I iterations 
3. Initialise by generating G … 
4. … random solutions 
5. All subsequent solutions are generated from elites in the map 
6. Randomly select an elite x from the map X 
7. Create x’, a randomly modified copy of x (via mutation and/or 

crossover) 
8. Simulate the candidate solution x’ and record its feature 

descriptor b’ 
9. Record the performance p’ of x’ 
10. If the appropriate cell is empty or its occupants’ performance is 

≤ p’, then, 
11. store the performance of x’ in the map of elites according to its 

feature descriptor b’ 
12. Store the solution x’ in the map of elites according to its feature 

descriptor b’ 
13. Return the feature-performance map (P and X) 



 

search then represents an attempt to balance these approaches in a single evolutionary process. Each of 
these approaches are described in the following sections.  

2.10.1 Objective-based Search  

Evolutionary algorithms typically use goal, or objective-based fitness functions that aim to direct evolution 
as linearly as possible towards fitter solutions (those solutions that are closer to the pre-determined 
objective). In the case of Keep-away, objective performance is defined as the hold time of the keepers. Thus, 
with the objective search approach, the fittest agents are those with the greatest average hold time. The 
fitness function can thus be described as mean episodic length, as in equation (1): 

 𝑓𝑖𝑡௫ =
1

𝑁
෍ 𝑇௝

ே

௝ୀଵ

 (1) 

In this equation, the length of an episode x is denoted by 𝑇௫ , and N is the number of task trials, 𝑇௝  is the 
length of the task trial j. The nature of objective search is that it will drive the solution as directly as possible 
towards the highest performance. As we will see, however, when discussing Novelty search, this direct 
approach can sometimes fail to find novel solutions that may lead to better performance, given the chance.  

Lehman, et al. [9] have described a typical challenge in evolution with objective search which is that it may 
fail to select agents that underperform in the current population but have traits that could result in high-
performing agents in future generations if given the opportunity to pass these traits along to their children. 

Consider that certain traits exhibited by underperforming agents could undergo evolutionary development 
over successive generations, leading to the emergence of higher-performing proficient agents. These 
intermediate generations of relatively poor performance that are important for future leaps in performance 
can be considered intermediate stepping stones. 

By way of example consider the sporting discipline of high jump. Traditionally, athletes would approach 
the task by leaping over the bar akin to hurdling. The adoption of any alternative technique would have 
hindered athletes’ progression in their athletic career as this would have been seen as a senseless 
divergence from what was known to be effective by their coaches.  

However, we now know that there is a superior technique to reach higher scores, namely the Fosbury flop, 
characterised by a backwards leap. Although initially unconventional, this novel approach has proven to be 
remarkably effective, surpassing its predecessors. 

As in the example, it is plausible that within the population of agents, there exists an individual executing a 
novel strategy that currently yields unsatisfactory performance in comparison to the best-performing 
solutions but has the potential to be a stepping stone to greater performance. It is conceivable that a specific 
trait inherent in this agent possesses latent potential, capable of allowing future generations to achieve 
unprecedented levels of performance. 

 

Figure 9: Figure taken from Mouret, et al. [8]. The figure depicts how MAP-Elites maps a high dimensional space in A 
to a lower dimensional 3D space in B by mapping task performance to one dimension, and various features of 

interest (Feature 1 and Feature 2 in this example) to the 2nd and 3rd dimensions. 



 

2.10.2 Novelty Search 

Novelty search was first described by Stanley et al [9] as an alternative approach to objective search in 
which novelty becomes a proxy for the intermediate steppingstones beneficial in evolution that lead to 
greater objective performance.  

With this non-objective evolutionary directive, novelty is rewarded, sometimes at the expense of linear 
increases in objective performance, but often resulting in higher objective performance because of the 
hidden performance features that may be behind a series of evolutions that objective search would not 
discover. 

Novelty search ascribes innate value to new behaviour, irrespective of whether they are the best solutions. 
Instead, solutions are evaluated based on their divergence from the existing behaviours already discovered 
throughout evolution. 

When employed as an objective function for use in HyperNEAT, Novelty search takes the form given in 
equations (2) and (3).  

 𝑁𝑜𝑣 =
1
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where, 
𝛿௜(𝑥, 𝑦) = ฮ𝑥௜ − 𝑦௜௝ฮ 

 

(3) 

In this equation 𝑥௝  represents the 𝑗௧௛ behavioural property of a genotype, similarly 𝑦௜௝  is the 𝑗௧௛  behavioural 
property of the 𝑖௧௛ nearest neighbour of genotype x. 𝛿 is the behavioural distance between two genotypes 
x and y. k is the number of nearest neighbours and is user specified. Thus 𝑁𝑜𝑣௫  is the Euclidean distance 
between a genotype’s chosen behaviour properties and k of its nearest neighbour’s behaviour properties. 
Hence, the further away that a genotype is from other genotypes in the search space with regard to their 
behavioural properties, the higher the Novelty of that genotype. 

One of the challenges associated with novelty search could be the potential delay in generating solutions of 
superior performance despite its capacity to produce a wide array of diverse and interesting (novel) 
solutions. It may take a comparatively long time to produce comparatively high-performing solutions to 
reach a global optimum. 

Thinking about this using the analogy of high jump once again, novelty search might result in jumpers who 
jump backwards, dive over forwards, try to walk on their hands (rather than feet), those that roll towards 
the jump, and so on. These diverging novel behaviours may over time result in high-performing solutions, 
but the majority will tend to be bad solutions, thus simply distracting the process, and causing a ‘wild goose 
chase’. 

2.10.3 Hybrid Objective-Novelty Search 

Studies have shown that controller evolution to solve complex collective behaviour does not perform well 
when either Novelty or when Objective search is employed [7]. Instead, various studies have found that a 
hybrid approach can result in the evolution of controllers capable of good performance [47-49]. Hybrid 
search is a linear combination of objective and other search methods such as Novelty, which will be the 
case in this research contribution. This process is intuitively a powerful combination, allowing the linear 
performance-biased objective search to drive evolution towards continuously stronger solutions while 
allowing the Novelty search to incorporate interesting new (novel) behaviours that could result in new 
evolutionary leaps forward. 

 

Hybrid search when employed as an objective function takes the form given in equation(4). 

 𝑠𝑐𝑜𝑟𝑒௜ =  𝜌 ∙ 𝑓𝚤𝑡ప
തതതതത + (1 − 𝜌) ∙ 𝑛𝑜𝑣పതതതതതത (4) 



 

In this equation, 𝑓𝑖𝑡௜  is the objective-based search fitness, and 𝑛𝑜𝑣௜  is the novelty score (as per equation (2) 
of the 𝑖௧௛ genotype. 𝜌 ∈  [0,1] is a user-defined hybrid scalar value that is used to control the relative 
contribution of normalised objective and novelty-based fitness in the hybrid score (𝑠𝑐𝑜𝑟𝑒௜).  

2.11 Discussion 

This research aims to build upon the work reviewed in this literature survey which has highlighted the 
capabilities and potential weak aspects of various approaches to evolving high performing agents in 
collective behaviour tasks such as Keep-away. 

The Keep-away task presents difficulties due to the curse of dimensionality of the state space and its 
dynamic, real-time nature; coupled with the partial environment observability, and the complex collective 
behaviour interaction dynamics.  

Another common challenge appears to be in effectively determining what the behaviour search space looks 
like in an intuitive way that could give rise to useful information about the task (such as which behaviour 
is most important for success). Didi [8] tackled this challenge with the use of Kohonen Self-Organising Maps 
(SOMS). 

MAP-Elites presents a unique approach to illuminating the behaviour search space in a way that can be 
visualised effectively in 2 or 3 dimensions if no more than three behavioural descriptors are selected.  

There appears to also be a gap in the literature regarding the effectiveness of combining MAP-Elites as an 
illumination algorithm with novelty search, objective search, and hybrid search. These gaps raise questions 
for us as to whether it would be useful to combine MAP-Elites and novelty search, given that there is a 
similar goal at the heart of both approaches to augmenting neuro evolution.  

Having perused the literature, we wonder whether MAP-Elites improves, hinders, or impacts task 
performance in Keep-away agents evolved with HyperNEAT in unexpected ways. Further to this, we 
wonder what the impact of MAP-Elites is on HyperNEAT evolved Keep-away agents when evolution has 
been directed by objective-search, novelty-search, and hybrid search.  

 



3 Methods and Experiments 

This chapter describes the research methods used to obtain experimental data and understand it so as to 
draw robust statistical conclusions about the impact of HyperNEAT, MAP-Elites, and various search 
directives for evolution.  

In the first stage of this study, MAP-Elites will be programmed into an existing codebase that contains an 
implementation of HyperNEAT with options for Novelty, Objective, and Hybrid novelty-objective-based 
search. In the second stage, keeper agents will be trained with the use of this implementation of ME-
HyperNEAT, as well as with an existing implementation of HyperNEAT with Novelty, Objective, and Hybrid 
Novelty-objective based search. The agents will be trained on 2 vs. 3 Keep-away soccer only, so as to limit 
the scope of the study to manageable dimensions, although future work should consider how increasing 
task complexity impacts behaviour. Training is conducted with the use of the same simulation framework 
used in previous work that this research is based on and takers will be controlled by the same heuristic 
controller as has been used in previous research.  

This simulation engine is described in section 3.1. We then made use of the evolution framework also used 
in previous work by Didi [8] to evolve our controllers as they attempt to perform the Keep-away task in the 
simulation engine. However, in order to make use of this framework for our purposes, some modifications 
were required. The most critical modification made was the addition of the MAP-Elites algorithm to the 
evolution framework. The software architecture and design of this addition is described in section 3.2.1. 

Finally, once the effectiveness and efficiency of the two techniques have been measured and recorded, their 
performance will be compared and analysed so as to accept or reject the null hypothesis. 

3.1 Keep-away Simulator  

In this research we made use of the RoboCup simulator 1 developed by Phillip Verbancsics [50]which was 
based on and translated from the work by the RoboCup Soccer Server Maintenance Group2. 

This simulation software is comprised of an object orientated architecture comprised of a Server class, and 
various other classes to which calls are made, including Ball, Field, Player, Referee, Stadium, etc. The Server 
drives the simulation synchronously from kick-off until the Referee decides that the game is over (typically 
because the ball has been intercepted by a Taker). In each simulation cycle players on the field make a 
move, which may include moving towards the ball, moving to a new position, or kicking the ball in an 
attempt to pass the ball to another player. During each cycle, the balls movement is simulated, and the 
referee analyses the state of play in order to enforce the rules of play and decide when the game is over. 
Takers are guided by a heuristic controller, while Keepers are guided by an evolved controller. 

The evolution framework reads the state of the game including player locations, ball location, etc. from the 
simulation server and uses this together with the evolved agent to determine player actions. These player 
actions are then fed back into the simulation by the evolution framework and a new cycle of simulation 
takes place. 

3.2 Evolution Framework  

In this research we made use of the existing HyperNEAT implementation also developed by Phillip 
Verbancsics and modified by Sabre Didi for his thesis work entitled Neuro-Evolution Behavior Transfer for 
Collective Behavior Tasks [8]. This evolution framework is incorporated into the same software project as 
the RoboCup simulator as an object orientated architecture and is comprised of classes for all key aspects 
of the HyperNEAT algorithm. These classes include the base Program, and supporting classes such as 
ComputeNovelty, Diversity, Utilities, etc.  

 

 
1 https://github.com/jeremybreytenbach/KeepawaySim/tree/devJeremy 
2 https://github.com/rcsoccersim/rcssserver 



 

 

3.2.1 MAP-Elites Implementation 

One of the contributions of this research was to add MAP-Elites as an optional feature to the evolution 
framework. The MAP-Elites implementation is made up of three classes. The architecture of this class-set 
is provided in Figure 10. 

3.2.2 ME-HyperNEAT Algorithm 

The combination of HyperNEAT and MAP-Elites gives rise to what we have called ME-HyperNEAT.  In order 
to implement ME-HyperNEAT and integrate MAP-Elites into the evolutionary process, it was necessary to 
modify the existing HyperNEAT code in two ways. First, to add an alternative select method that 
implements the MAP-Elites select functionality wherein elites (those agents that occupy unique positions 
in the Elite Map) are included in the selection for further evolution. 

The second change was to implement an updateMAP method that acts at each generation of evolution 
wherein unique agents are stored in the Elite Map.  

3.2.3 Performance and behavioural metrics 

In this research we make use of selection of domain standard performance metrics so as to aid comparison 
with peer research. For evolutionary performance we focused analysis on search fitness, and task 
performance, and for MAP-Elites consideration we focused on global reliability, and coverage along with 
maximum task performance and average performance. The key performance metrics used are described in 
Table 3.  

3.2.4 Analysis infrastructure 

As part of the work completed, we developed a MATLAB based analysis infrastructure that would enable 
efficient analysis of the resultant simulation and evolution research data. This infrastructure is intended to 
be usable by future researchers. 

 

 

Figure 10: MAP-Elites Class Diagram. The MAP-Elites implementation is made up of three classes. MAPElites is the 
main class and contains the instantiation of the map itself, which is described by the EliteMap class. The EliteMap 
class then makes use of the MapElements class which makes up each discrete cell in the map. Methods available in 

the three classes allow for genomes in the map to be compared, updated and replaced as evolution takes place.  



 

 

3.2.5 Experiments 

The principal aim of this study is to investigate the efficacy of integrating an illumination algorithm into 
objective, non-objective, and hybrid search strategies within the context of multi-agent systems. Our focus 
is on assessing how this integration influences task performance and exploration of the search space in 
Keep-away soccer scenarios when employing MAP-Elites in conjunction with Novelty search, objective 
search, and hybrid novelty-objective search methods. 

Our primary methodology involves evaluating the performance metrics of simulated Keep-away soccer 
agents that have undergone evolution using a version of HyperNEAT combined with MAP-Elites, which we 
have called ME-HyperNEAT. This investigation is conducted through experimentation, with the comparison 
of outcomes against a null hypothesis formulated as follows: 

Class name Type Description 

EliteMaps.cs Class The N-dimensional map of elites, made up of MapElements. 

MapElement.cs Class MapElements represent each discreet cell or location in the N-
dimensional map. 

MapElites.cs Class The parent class that implements the MAP-Elites algorithm. 

Table 2: MAP-Elites Classes. The MAP-Elites implementation is made up of three classes. MapElites is the parent class tha 
implements the MAP-Elites algorithm. This class makes use of the EliteMap and MapElement classes to record and store 

genomes in the discretised N-dimensional map of elites. 

Category Performance metric Description Range 

HyperNEAT Search fitness (OS, NS, ONS, ME-OS, 
ME-NS, ME-ONS) 

Search fitness describes 
how well the genome is 
able to meet the chosen 
evolutionary directive. 
Each variant has a 
different evaluation 
function, each is 
described in section 2.10 

24.5 < OS < 107.9 

 15.9 < NS < 414.8 

13.1 < ONS < 308.2 

13.1 < ME-OS < 18.9 

7.1 < ME-NS < 14.1 

8.3 < ME-ONS < 37 

RoboCup 
Keep-away 
Soccer 

Task performance (TP)  Task performance is the 
measure of Keep-Away 
agents average hold 
time, measured in 
seconds. 

9.6 < TP < 22.8 

MAP-Elites Global reliability (GR) The average 
performance of the filled 
cells or niches in the 
feature-performance 
map (0 where cells are 
empty) across all runs 
for the same task. 

0 < GR < 100% 

 Coverage (C) How many cells or 
niches of the feature-
performance map a 
particular run of MAP-
Elites can fill of the total 
possible. 

0% < C < 100% 

Table 3: Performance metrics without normalisation. The table describes our selected performance metrics and categorises 
them according to the particular area of study they below. Throughout evolutionary search, HyperNEAT makes use of 

Search fitness to direct evolution. The key metric in RoboCup Keep-away soccer, and our primary metric of interest is Task 
performance, which is a measure of how long keeper agents are able to keep the ball in their possession. We measure MAP-

Elites through Global reliability and Coverage, which represent the reliability of solutions in the map, and the number of 
elites that have been discovered, respectively. 



 

 

Agents evolved for 2 vs. 3 Keep-away soccer with MAP-Elites augmented HyperNEAT does not yield a higher 
average task performance than either Objective search, Novelty Search or Hybrid novelty-objective directed 
implementations of HyperNEAT when not augmented by MAP-Elites. 

In order to address our research questions, we needed to gather data for 6 experimental permutations 
(variants) derived from the unique combination of the three search directives: Novelty, Objective-search, 
Hybrid search, and the inclusion or exclusion of the MAP-Elites algorithm. The six permutations are listed 
in Table 6. We captured agent performance data at each generation of evolution for each of the 6 variants, 
as well as evolution data including speciation and genome age. A full description of the important 
performance metrics and the related data captured is given in section 3.2.3.  

3.2.6 Hyper-Parameters 

Previous work by Gomes, et al. [47] demonstrated that a medium to high hybrid combination ratio of 50%-
80% yielded the best results, while Didi [8] found that a hybrid combination ratio of 40% yielded the best 
results in a similar experimental setup to ours. In this research, we found that weight of 30% yielded the 
best results. 

To determine the best select percentage for OS, NS and ONS, experiments were configured to allow us to 
determine the right hyperparameter tuning in order to get the best task performance out of each evolution 
method. We performed a sweep through a range of select-percentages and once complete, we selected the 
best parameters for each experiment permutation. The bolded and italicised rows indicate the highest 
performing repetitions. Similar experiments conducted for ME-OS, ME-NS and ME-ONS indicated that a  

select percentage of 60% was best in these cases. The rest of the parameters for experimentation were 
maintained from previous research work by Didi [8] These parameters are given in Table 5. 

 

Search method Hybrid combination ratio Select percentage Task Performance 

OS N/A 10% 91.5 

OS N/A 30% 107.9 

OS N/A 50% 107.9 

OS N/A 70% 28.4 

OS N/A 90% 24.5 

NS N/A 10% 197.4 

NS N/A 30% 14.5 

NS N/A 50% 117 

NS N/A 70% 70.8 

NS N/A 90% 24.4 

ONS 30% 10% 18.2 

ONS 30% 30% 113.7 

ONS 30% 50% 147.6 

ONS 30% 70% 28.8 

ONS 30% 90% 12.6 
Table 4: Hyperparameter tuning for select percentage for OS, NS, and ONS variants without normalisation. The table 
outlines the parameter sweep strategy we employed to discover a suitable Select percentage for our experimentation. 

The bolded and italicised rows indicate the highest performing Select percentages for OS, NS, and ONS. Similar 
experiments conducted for ME-OS, ME-NS and ME-ONS 



 

 

3.2.7 Research Experimentation 

The approach to experimentation was to set up sixty individual experimental runs, resulting from ten 
iterations of each of the six experiment permutations presented in Table 6 and record the output data. This 
would allow us to apply statistical significance testing on the data and obtain robust results. 

3.2.8 Number of Evolution Generations 

We wanted to know whether more generations would have a significant impact on task performance. 
However, with each generation of evolution taking approximately 33 minutes of computation on the 
University of Cape Town HPC infrastructure, we faced a considerable time challenge. We reasoned that 500 
generations for each of the 60 experiment runs (10 independent runs for each of the 6 variants) resulting 
in approximately 2063 hours (86 days) of computation on average, when running 8 experiments in parallel 
at a time would be our absolute limit, but finding a smaller number of generations that would result in 
similarly satisfactory results would be ideal. 

To address this challenge, we ran a sub-set of experiments up to 500 generations of evolution and observed 
what the minimum number of generations would be to obtain satisfactory results wherein there was no 
change in the task performance ranking of the 6 experimental permutations. 

We observed that there was no task performance rank change after 270 generations. We therefore settled 
on 270 generations of evolution for all experiments, resulting in approximately 1114 hours (46 days) of 
computation on average, running 8 experiments in parallel at a time. 

NE Parameters Setting HyperNEAT CPPN Functions 
Population Size 150 Identity 𝑥 
Generations 270 Gaussian 𝑒ିଶ.ହ௫మ

 
Maximum number of species 10 Bipolar Sigmoid 2

1 + 𝑒ିସ.ଽ௫
− 1 

Maximum species population 30 Absolute value |𝑥| 
Mutation Type Gaussian Sine 𝑠𝑖𝑛𝑒(𝑥) 
Weight value range [-5.0, 5.0] Simulation Parameters Setting 
Mutation rate 0.05 Number of Runs 10 
Survival threshold 0.2 Iterations per task trial 4500 
NS Parameters Setting Trials per generation 10 
NS nearest neighbour k 15 Agent positions Random 
Maximum archive size 1000 Environment size 20x20 grid 
Compatibility threshold 3 Agent speed (per iteration) 1 grid cell 
Behavioural threshold 0.03 Ball speed (per iterations) 2 grid cells 
MAP-Elites Parameters Setting Hybrid Search Parameters Setting 
Map resolution 0.05 Hybrid combination ratio 30% 
Table 5: Hyperparameters for experiments. Left: Neuro-Evolution (NE), Novelty Search (NS) parameters. MAP-Elites 
parameters. Right: HyperNEAT CPPN activation functions, Simulation Parameters and Hybrid Search parameters. 

Experiment 
permutation 

Variant Search Method Incorporates 
MAP-Elites 

Select 
Percentage 

1 OS Objective search No 30% 
2 NS Novelty search No 10% 
3 ONS Hybrid search No 50% 
4 ME-OS Objective search Yes 60% 
5 ME-NS Novelty search Yes 60% 
6 ME-ONS Hybrid search Yes 60% 

Table 6: Method variants, covering 6 experimental permutations derived from the unique combination of the three 
search directives: Novelty (NS), Objective-search (OS), Hybrid search (ONS), and the inclusion or exclusion of the MAP-

Elites algorithm (denoted by the prefix ME). The table describes each variant and the select percentage we used for each 
variant (see 3.2.6). 



 

3.3 High Performance Computing 

Each experiment took considerable time to complete and so it was necessary to make use of High-
Performance Computing (HPC) infrastructure to obtain results in an achievable time. 

In this research, we made use of the Centre for High Performance Computing (CHPC) infrastructure to 
complete experiments during the exploration and hyperparameter tuning, and then switched to the 
University of Cape Town HPC infrastructure for final experimentation. 

A MATLAB based infrastructure was developed to facilitate the preparation of simulation files and job 
scripts in such a way as to avoid and ensure there was no human error in preparing experiment 
configurations for a large number of experiments.  

3.4 Statistical tests 

We repeated experiments 10 times for each variant and recorded the best performance achieved during 
each evolutionary run for statistical testing. We applied the Lilliefors test [51] to determine which datasets 
were non-parametric and which were from the normal family. 

Task Performance and Search Fitness data across experimental runs were found to be non-parametric for 
the OS variant and from the normal family for all other variants. Coverage data across experimental runs 
were found to be non-parametric for the ME-ONS variant and from the normal family for all other variants. 
Global reliability data was found to be from the normal family for all variants. 

These mixed results lead us to apply statistical testing using the two-sided Wilcoxon rank sum test, which 
is equivalent to the Mann-Whitney U-Test (p < 0.05)[52]. This test useful in that it is appropriate for both 
non-parametric and normal pair-wise comparisons. The statistical tests were applied in pair-wise 
comparisons between data-sets for the method variants, and complete overview of statistical test results 
are provided in Appendix A: Statistical Tests  

3.5 Summary 

This chapter outlines the systematic approach taken to examine the impact on performance through 
integration of MAP-Elites as an illumination algorithm into various HyperNEAT driven search strategies 
within a multi-agent system. This integration, termed ME-HyperNEAT, is significant as it enables us to 
explore capability related to the generation of high performing and diverse agent behaviours. 

Our method centres on the training keeper agents using ME-HyperNEAT alongside the Novelty, Objective, 
and Hybrid novelty-objective search, and the experiments are conducted in a controlled simulation 
environment tailored for 2 vs. 3 Keep-away soccer scenarios. 

This chapter presents key technical details regarding our methods and experiments. We describe 
modifications made to the evolution framework to accommodate MAP-Elites, resulting in ME-HyperNEAT. 
We discuss the development of a MATLAB-based analysis infrastructure for efficient data processing and 
the strategic use of High-Performance Computing (HPC) resources to optimize computational efficiency. 
Additionally, our selection of performance and behavioural metrics is provided and we describe our final 
experimental setup, encompassing experiment design, hyper-parameter selection, and the rationale behind 
determining the number of evolution generations utilised in the study. 

 



4 Results and Discussion 

In this chapter we will report on experiment results and compare variants to each other in terms of task 
performance, global performance, coverage, global reliability, and exploration of the behaviour search 
space. 

We begin with a summary of the results obtained with each variant, and then continue on to systematically 
compare all 6 variants to each other. Our approach to this is first to compare the variants with MAP-Elites 
excluded from the algorithm (OS, NS, ONS) to each other, and then we compare each of these variants to 
their counterparts when MAP-Elites is included. We then conclude by making comparisons of all variants 
to each other. 

This approach allows us to understand the difference in performance and behaviour for each of the 
‘standard’ variants, and then understand how MAP-Elites influences each of them. The variants we will 
report on, and compare are described in Table 7 and the structure of this chapter is as follows: 

 Overall results comparison (4.1) 
 OS vs. NS vs. ONS (4.2) 
 OS vs. ME-OS (4.3.1) 
 NS vs. ME-NS (4.3.2) 
 ONS vs. ME-ONS (4.3.3) 

4.1 Overall Results Comparison 

Results for the best performing genome of any run, at any generation (the best genome generated by the 
variant) are presented in Table 8. Search Fitness is the result of Equation (1 for OS and ME-OS; Equation(2 
for NS and ME-NS; and(4 for ONS and ME-ONS (all presented in 2.10). Task performance is the Average 
Hold Time described in 2.1.2 and 3.2.3. Global Performance is the relative performance for each variant 
compared to the best task performance obtained in any run as described in 3.2.3. Coverage is the amount 
of the conceivably searchable behaviour space that was explored by the variant as described in 3.2.3. Global 
Reliability is the average performance of the filled cells or niches in the feature-performance map as 
described in 3.2.3. 

As described in 3.4 we conducted 10 independent evolutionary runs for each variant. We recorded the best 
task performance obtained (at any generation) for each run and used these figures to perform significance 
testing. We present these results in Figure 11, which shows boxplots indicating the distribution of best 
achieved task performance across the 10 independent runs. The figure shows that there is a wide 
distribution of best performance for the variants. The least variation (most consistent results) was obtained 
from ONS (interquartile range of ~0.13) and ME-NS (interquartile range of ~0.09). The widest range of 
best task performance was observed in OS (interquartile range of ~0.26) and ME-ONS (interquartile range 
of ~0.29). The minimums and maximums at the end of the whiskers indicate the highest and lowest 
performance achieved for each variant. We observed that the best individual performance was achieved by 
ME-ONS, followed closely by ME-OS, and the worst individual performance was achieved by ONS, and 
followed by ME-ONS, perhaps indicating that hybrid search has the highest propensity to explore the search 
space irrespective of performance and thus find the widest range of performance. ME-OS had the highest 
median performance achieved (indicated by the red line in each box) indicating that ME-OS had the highest 
probability to develop strong solutions (solutions with task performance above 0.70). When comparing 
each distribution for statistical significance we observed that only ME-NS was significantly different to OS, 
ONS, ME-OS. No other comparisons yielded a significant difference for maximum task performance. 
Assiciated p-values are provided in Table 9-12 in Appendix A: Statistical Tests  

Figure 12 shows the distribution of task performance for each variant’s population at the generation in 
which the best task performance was discovered. This view allows us to understand whether each variant 
creates a population that is significantly better than another. The key insight we take from this is that 
although ME-ONS and ME-OS produced best performances that were not significantly different (Table 9, 
Appendix A), the population produced by ME-ONS was different (better) than ME-OS with statistical 
significance (Table 9, Appendix A). 



 

 

In terms of the MAP-Elites performance metrics, we note that OS had the highest coverage, followed by NS, 
ME-OS, ME-NS, ME-ONS, and ONS however none of these results were statistically significant (Table 11, 
Appendix A). The highest global reliability was achieved by ME-OS, followed by OS, ME-NS, NS, ONS, and 
ME-ONS. In this case, OS was significantly different to NS, ONS, and ME-NS, and ONS was significantly 
different to ME-OS (Table 12, Appendix A). The close results show that all variants performed fairly evenly 
with respect to global reliability in this task, with only OS seemingly to have the best global reliability with 
statistical significance (Table 12, Appendix A). 

4.2 Non MAP-Elites Variants (OS, NS, ONS) 

In this section we compare OS, NS and ONS against each other in terms of task performance, and capability 
in maximising useful usage of the behaviour search space, that is, the ability to both explore, and exploit. 

4.2.1 OS vs. NS vs. ONS 

Figure 13 shows the maximum task performance for OS, NS and ONS. From this figure we see that OS 
achieves the best performance of the three variants. Figure 15 shows how all three variants perform 
similarly at the start of the evolutionary process, but by generation 5, OS takes a leap forward and then 
retains its lead throughout the rest of the evolutionary process. NS and ONS remain quite close in 
performance all throughout the process. This observation is made clearer in Figure 14 and Figure 16 which 
show the average task performance for OS, NS and ONS. From this figure we see that OS shows the best 
average task performance across the entire population at each generation of evolution. Here we can see 
that OS outperforms NS and ONS on average, and by generation 7, the average task performance for OS is 
greater than that of NS and ONS, and this status is maintained throughout the rest of the evolutionary run. 
We also see that by generation 6, the average task performance is better for ONS than for NS and this status 
is retained throughout the rest of the evolutionary run. Figure 13 is annotated to show the generation 
where the maximum performance is achieved for each variant. The best task performance was achieved by 
OS, followed by ONS, and then NS (with statistical significance, Table 9, Appendix A). OS and ONS achieved 
maximum performance as early as generation 34 and 30, respectively, while NS took significantly longer, 
achieving maximum performance at generation 119. None of these variants achieve higher performance in 
the second half of the evolutionary run, showing that either there is no more potential for better 
performance, or a significant leap in evolution would be needed to overcome this performance plateau.  

Variant Name Variant Description 
OS Objective-based Search 
NS Novelty Search 
ONS Hybrid Novelty-Objective based Search 
ME-OS MAP-Elites - Objective-based Search 
ME-NS MAP-Elites - Novelty Search 
ME-ONS MAP-Elites - Hybrid Novelty-Objective based Search 
Table 7: Evolution method variants covering 6 experimental permutations derived from the unique combination of 
the three search directives: Novelty (NS), Objective-search (OS), Hybrid search (ONS), and the inclusion or exclusion 

of the MAP-Elites algorithm (denoted by the prefix ME). 

Search 
method 

Search 
Fitness 

Task 
Performance 

Map 
Coverage 

Global 
Reliability 

Generation of 
maximum 
performance 

OS 0.70 0.94 99.5% 2.164% 34 
NS 0.58 0.73 99.2% 2.131% 119 
ONS 0.57 0.77 98.6% 2.118% 30 
ME-OS 0.74 1.00 99.1% 2.168% 254 
ME-NS 0.41 0.68 98.9% 2.144% 111 
ME-ONS 1.00 1.00 98.8% 2.110% 265 
Table 8: Normalised maximum task performance for each of the six variants along with normalised search fitness, 
global performance, coverage, global reliability, and the generation at which maximum performance was achieved 

for each variant in any run. The maximum number of generations for any given run was 265. 



 

  

We now describe the way each variant is able to explore the search space in three chosen directions which 
have been chosen as the phenotypic descriptors for genomes. These are Number of passes (NP), Distance 
of the Ball from the Field Centre (DBFC), and Team Dispersion (TD). In addition, we analyse each variant’s 
ability to explore and exploit the search space by assessing Global fitness, Coverage, and Global reliability. 

We introduced the concept of an elite in 2.9 when reviewing MAP-Elites as the best performing genome 
reserving a unit of space in the behavioural search space. In order to understand and showcase each 
variant’s ability to explore and exploit the search space, we made use of 3-dimensional plots where each 
elite is represented by a point on the plot with X, Y, and Z dimensions representing the three behavioural 
descriptors for genomes (NP, DBFC, TD, respectively). Additionally, the colour and size of each dot 
represents its task performance. The genome with the best task performance in each plot is also highlighted 
with an annotation to the plot.  

Figure 17, Figure 18 and Figure 19 show these 3-D plots for the OS, NS and ONS variants respectively. 
What’s interesting is that OS (Figure 17) seems to explore the search space in a symmetrical fashion, 
creating a symmetrical cone-like shape centred around its Y axis (NP), with a wide base of relatively low 
performing genomes at around 20 (0.15 after normalising) passes, and peaking towards the other end of 
the scale at 134 passes (1 after normalising). This is different to NS (Figure 18) which appears to have 
explored in a symmetrical way, especially noticeably exploring a low performing region towards the higher 
end of the Z (BDFC) and X (TD) axis, this is annotated as B in Figure 18. The best performing NS genome 
still appears towards the end of the Y axis scale (NP), indicating that this is a critical behaviour trait for task 
performance, however we do notice that there are more high performing genomes close to this region as 
compared to OS. As one would expect, the ONS plot (Figure 19) shows what appears to be a middle ground 
between OS and NS, where the cone structure is maintained but there is some NS-like exploration outside 
of the symmetrical shape seen in OS.  

Table 8 provides the quantitative results of our Global fitness, Coverage, and Global reliability calculations. 
These findings indicate that, although NS and ONS include greater evolutionary incentives for exploring the 
search space compared to OS, OS still appears to outperform these other variants in this task. However, it 
is important to note that only the Global reliability measure shows statistical significance (Table 12, 
Appendix A). 

 

 

Figure 11: Distribution of normalised maximum task performance (average hold time, 2.1.2 and 3.2.3) across 10 
runs for each variant (OS, NS, ONS, ME-OS, ME-NS, ME-ONS). ME-NS is significantly different to OS, ONS, ME-OS. No 
other comparisons yielded a significant difference for maximum task performance (two-sided Wilcoxon rank sum 

test, which is equivalent to the Mann-Whitney U-Test) 
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We have also created three surface plots (Figure 20 I - IX) per variant where the colour scale and Z-axis 
represent task performance, and the X-axis and Y-axis represent each of the 3 behavioural descriptors 
against each other. From these figures (subplot I, III, IV, VI, VII and IX) one can see the strong positive 
correlation between number of passes and task performance. Comparatively, there does not seem to be a 
strong correlation between BDFC or TD to task performance, but there are clear local minima and maxima. 

For additional analysis we created “top-down” heat maps in Figure 21 that map out task performance for 
each behaviour descriptor combination. For example, we can see in subplot IIX that there is a particularly 
strong area of performance between 0.7 and 0.85 for BDFC, and between 0.75 and 0.83 for TD. The corollary 
is also true, that there is particularly weak performance around the edges of the explored behaviour space 
(with regards to these two behaviour descriptors). 

 

 

Figure 12: Best generation population comparison. Distribution of normalised task performance (average hold time, 
see 2.1.2 and 3.2.3) across 10 runs for the population in which the best task performance was achieved in each 

variant (OS, NS, ONS, ME-OS, ME-NS, ME-ONS). ME-OS is not significantly different to OS. ME-NS is not significantly 
different to NS or ONS. ME-ONS is not significantly different to ONS or ME-ONS. All other comparisons did yield a 

significant difference for maximum task performance (two-sided Wilcoxon rank sum test, which is equivalent to the 
Mann-Whitney U-Test, Table 9, Appendix A) 
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Figure 13: Maximum normalised task performance (average hold time, see 2.1.2 and 3.2.3) across 10 runs in 
population for OS, NS and ONS at each generation of evolution. The annotations A, B and C show the generation where 

the maximum performance is achieved for each variant, OS, NS, and ONS, respectively. OS reaches its peak 
performance early at 34 generations and on average performs better than NS and ONS for the remainder of evolution. 

NS and ONS reach their peak performance at generation 119 and 30 respectively, but on average perform similarly. 
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Figure 14: Average normalised task performance (average hold time, see 2.1.2 and 3.2.3) for the population across 10 
runs for OS,  NS, ONS. The figure demonstrates how OS is able to consistently produce a higher performing population of 

genomes throughout evolution. 
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Figure 15: Maximum normalised task performance (average hold time, see 2.1.2 and 3.2.3) across 10 runs for each 
variant during the first 25 generations for OS, NS, ONS. The figure shows how OS was able to leap ahead of both NS 

and ONS in performance as early as generation 5. 
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Figure 16: Average task performance (average hold time, see 2.1.2 and 3.2.3) in population across 10 runs over the 
first 25 generations for OS, NS, and ONS. The figure shows how OS was able to produce a population that had higher 

performanec on average from as early as generation 7. 
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Figure 17: Task performance (average hold time, see 2.1.2 and 3.2.3) behaviour map of elites for OS. Annotation A 
indicates best performing elite in the map. 

 

Figure 18: Task performance (average hold time, see 2.1.2 and 3.2.3) behaviour map of elites for NS. Annotation A 
indicates best performing elite in the map. Annotation B indicates an extended region of exploration. 



 

 

 

 

Figure 19: Task performance (average hold time, see 2.1.2 and 3.2.3) behaviour map of elites for ONS. Annotation A 
indicates best performing elite in the map. 

 
Figure 20: Interpolated 3-Dimensional analysis of task performance (average hold time, see 2.1.2 and 3.2.3) feature 

space for OS (top row I, II, III), NS (middle row, IV, V, VI), and ONS (bottom row, VII, IIX, IX). We have performed 
linear interpolations between elites in order to create smooth surfaces. 



 

 

4.3 MAP-Elites Variants (ME-OS, ME-NS, ME-ONS) 

In this section we report on and compare the results obtained by each of the previously discussed variants 
(OS, NS, ONS) against their MAP-Elite variant counterpart. We report on the impact for each of them when 
including MAP-Elites in the selection process. 

Table 8 shows how incorporating MAP-Elites improves performance for OS and ONS, but interestingly 
reduced performance of NS. Figure 22 shows the task performance trend for ME-OS vs. ME-NS vs. ME-ONS. 
In this figure we see how the population of ME-OS outperforms the other variants populations for most of 
the evolutionary run and with statistical significance (Table 9, Appendix A) when comparing each variant’s 
best performing generation. 

Figure 24 shows the first 25 generations of evolution and shows us that OS performed better from 
generation 2, and maintained its superiority until evolution concluded, although only with a statistical 
significance of 65%. Figure 26 makes this trend clear by showing the average population performance for 
each generation. 

Interestingly, and what is different to the OS, NS and ONS variants, is that the best performance was reached 
by the ME-OS and ME-ONS variants later in evolution. ME-OS achieved its best performance at generation 
254, and ME-ONS achieved its highest performance at generation 265 (compared to generation 34, and 30 
for OS and ONS respectively). Interestingly, ME-NS achieves its best performance at generation 111, which 
is at a similar stage to NS which achieved its best performance at generation 119. 

In terms of performance comparisons, ME-ONS resulted in the best performing genome of these three, and 
in fact all variants with a task performance of 1. Although this result was not statistically significant, on 
average, the population of ME-ONS outperformed all other variants with statistical significance (Table 9, 
Appendix A). 

ME-OS resulted in the second highest task performance at 0.99 and although this result was only 
statistically significant compared to ME-NS, the outperformance of the population was significantly 
different to the other variants (Table 9, Appendix A). 

 
Figure 21: Interpolated task performance (average hold time, see 2.1.2 and 3.2.3) “top-down” heat map for OS (top 

row I, II, III), NS (middle row, IV, V, VI), and ONS (bottom row, VII, IIX, IX).  for each behaviour descriptor 
combination. We have performed linear interpolations between elites in order to create smooth surfaces. 



 

ME-NS interestingly achieved the lowest performance of all variants (including non-MAP-Elites variants), 
and this result is statistically significant compared to OS, ONS, and ME-OS but not statistically significant 
(Table 9, Appendix A) when compared to any other variant. 

It was also interesting to note that ONS was outperformed by OS until generation 265 when it apparently 
evolved a high performing genome that outperformed OS. 

Figure 23 shows surface plots for ME-OS, ME-NS and ME-ONS. From these figures one can see similar trends 
to those found in OS, NS and ONS (see Figure 20). The major difference being that ME-OS and ME-ONS 
achieved higher task performances. These views also highlight the importance of the Number of Passes as 
the plots form triangular surfaces, seemingly searching a narrower and narrower band of TD and BDFC and 
yet achieving higher performance as long as NP increases.  We will describe this search space exploration 
in more detail in the following sections which make comparisons between OS and ME-OS, NS and ME-NS, 
and between ONS and ME-ONS. 

4.3.1 OS vs. ME-OS 

Figure 27 shows the task performance trend for OS vs. ME-OS. Performance is close, but in later generations 
at generation 254, ME-OS discovers something important, resulting in a high performing solution. ME-OS 
resulted in a higher performing solution than OS, but not with statistical significance over the course of 10 
runs (Table 9, Appendix A). Although the best task performance obtained was not statistically significant, 
on average, the population of ME-OS outperformed OS in task performance with statistical significance 
(Table 9, Appendix A), this is shown in Figure 28. 

Figure 33 shows heat maps for task performance, comparing each behaviour descriptor. Here we can make 
similar observations to those we made in Figure 21 for the OS, NS and ONS variants. Namely, we see that 
there is a strong positive correlation between Task performance and Number of Passes. We also see that 
there is a strong region of performance between 0.75 and 0.83 for TD and between 0.73 and 0.85 for BDFC. 
The difference here between OS and ME-OS is that ME-OS was able to better exploit the importance of NP, 
thus resulting in the triangular shape peaking in the high-performance zone at the top of subplot IV and VI 
in Figure 33.  

 

Figure 22: Maximum task performance (average hold time, see 2.1.2 and 3.2.3) over 10 runs  for ME-OS, ME-NS and 
ME-ONS. Annotations A, B and C indicate the generation when each variant produced its best task performance. 
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What is unexpected is that OS seems to have explored the low performance space at the lower range of NP 
more than ME-OS.  This is perhaps due to MAP-Elites resulting in more directionality in the evolutionary 
process as the elites in the map drive evolution towards their centre of mass, compared to OS which tends 
to explore more equitably in directions of higher performance. 

4.3.2 NS vs. ME-NS 

Figure 29 shows the trend of task performance at each generation for NS and ME-NS. Interestingly NS 
outperformed ME-NS, unlike is the case with the other variants which performed better with ME than 
without, reaching its best performance of 0.7325 at generation 119. ME-NS reached its best performance 
of 0.6798 at generation 111. This difference in performance was not statistically significant (Table 9, 
Appendix A), however the population was significantly different in performance (Table 14, Appendix A), 
which is also seen in Figure 30 which shows average population task performance at each generation. 

The performance trend seems to indicate less of an oscillatory pattern of performance with ME-NS than 
with NS, where low and high ranges of task performance are achieved successively throughout evolution. 
It appears that ME when coupled with NS might actually be limiting exploration of the search space. We can 
see this more clearly in Figure 18 and Figure 37 which show the map of elites in 3 dimensions. NS explores 
the space more freely than ME-NS. In these figures observe that the NS variant stretches out further into 
the search space, covering a greater range in the X (NP) direction, and takes a greater detour into the region 
denoted B in the figure.  We also see in these figures that ME-NS appears to search more low performing 
areas at the task performance level of around 0.44 (teal colour in the figures), this exploration is perhaps 
at the expense of performance since we now know that NP is the most critical behavioural feature for task 
performance. 

Figure 34 shows subtle differences between the search space exploration for NS vs. ME-NS. The shape of 
each surface is similar, but not identical. We see in subfigure I and IV that NS explores the relationship 
between NP and TD more thoroughly than ME-NS. Subfigure II and V show that the two variants explored 
different finding different low performance regions but discovered the same hot spot of performance 
around BDFC = 0.8 and TD = 0.79. Subfigures III and VI show again that NS was able to exploit NP more 
effectively than ME-NS, perhaps because ME-NS spent more time exploring a greater range of BDFC at the 
lower range of task performance < 0.22.  

 

Figure 23: Interpolated 3-Dimensional analysis of task performance (average hold time, see 2.1.2 and 3.2.3) feature 
space for ME-OS (top row I, II, III), ME-NS (middle row, IV, V, VI), and ME-ONS (bottom row, VII, IIX, IX). We have 

performed linear interpolations between elites in order to create smooth surfaces. 



 

4.3.3 ONS vs. ME-ONS 

Figure 31 shows the trend of best fitness achieved in each generation for ONS and ME-ONS. ME-ONS 
outperforms ONS with a task performance of 1 at generation 265 compared to 0.77 at generation 30 for 
ONS. However, this result was not statistically significant (Table 9, Appendix A), and neither was 
performance for the full population of ME-ONS compared to ONS. This result can be understood when we 
consider that ME-ONS performed similarly to ONS for most of the evolutionary run, until something 
important was discovered at generation 265, resulting in a high performing genome for ME-ONS. This 
observation tells us that there is likely more task performance to be achieved if more generations of 
evolution are performed.  

In ad hoc experimentation, we performed evolution for up to 500 generations, and in those runs did not 
find that results improved significantly enough to warrant the additional computational time. However, we 
do concede the recommendation that it may be worth attempting to run these experiments for significantly 
extended periods of around 600 to 1000 generations in the future.  

Looking at Figure 19 and Figure 38 we can see how far of a leap was taken by ME-ONS to evolve its best 
performing elite (annotated in the figures as A). Looking at how the behaviour dimensions relate to task 
performance in Figure 35 shows how ME-ONS was able to develop better solutions overall by exploiting 
NP. We observe that these two variants explored the low performing areas of the TD vs. BDFC dimensions 
differently, however similarly to all other variants, they were able to find hot spots of performance around 
BDFC = 0.8 and TD =0.79. 

4.4 MAP-Elites Performance Metrics 

We selected Coverage and Global Reliability as MAP-Elites performance metrics. These results are provided 
in Table 8.  

Coverage results showed that OS was able to discover the most elites in the search space, followed by NS, 
ME-OS, ME-NS, ME-ONS, and finally ONS. However, these results were not statistically significant (Table 11, 
Appendix A) enough to make this claim certain. The similarity in results does however show that in this 
collective behaviour task, all variants explored a similar proportion of the behaviour space. 

Global reliability shows that ME-OS was able to produce the best average performance of all elites in the 
discovered behaviour space, followed by OS, ME-NS, NS, ONS, and ME-ONS. Statistical significance was 
found for OS vs. NS, ONS, ME-NS and for ONS vs. ME-OS (Table 12, Appendix A). This finding shows us that 
OS and ME-OS may have potential to produce better average elite performance throughout the behaviour 
space, but the lack of statistical significance across all comparisons indicates that further research would 
be needed to make this claim with confidence. 

4.5 Comparisons with previous research 

Previous research by Didi [8] on which this research is based corroborate our research in that they found 
the best task performance was achieved by ONS, followed by OS, and then NS, the same hierarchy as our 
research when excluding the MAP-Elites variants. When including the MAP-Elites variants, we found that 
the best task performance was found by ME-ONS, followed by ME-OS, then OS, ONS, NS, and finally ME-NS.  

Didi [8] also described that the best performing agents demonstrated high number of passes with little 
team dispersion and distance to the field centre. They also found that with OS the best performing agents 
had low team dispersion and average distance from the centre of the field. Comparing this to our results, 
we found that number of passes was the critical behaviour characteristic and was highly correlated with 
task performance for all variants. We found that team dispersion was important as well, but all variants 
were able to find what appeared to be a local (or perhaps global) optimal area of performance between 
0.775 and 0.825. We found that ball distance from field centre was uncorrelated with task performance, 
which also appears to confirm what was found by Didi [8]. In future research we recommend that more 
behaviour descriptors are investigated to determine whether there are other behaviour traits that could 
aid our understanding of the behaviour space beyond the three behaviour traits investigated so far. 

Didi [8] found that NS was able to explore more diverse solutions but was not able to evolve high 
performing agents in comparison to OS and ONS. We can confirm this result, with the additional insight 
that combining MAP-Elites increases this phenomenon even further, demonstrated by our results that 



 

showed ME-NS resulted in a lower task performance than NS, as well as a lower global reliability and 
coverage (Table 8). 

4.6 Summary 

In our experiments we discovered that the best task performance was obtained by ME-ONS, a combination 
of MAP-Elites, and hybrid objective, non-objective search. Although this result was not statistically 
significant (Table 9, Appendix A), we believe it provides good weight of evidence to the hypothesis that 
MAP-Elites does indeed improve the performance of evolution in the Keep-Away task, which is a type of 
collective behaviour task. Additionally, our findings were that ME-OS outperformed OS, and ME-ONS 
outperformed ONS. This too lends weight of evidence to our finding.  

On the other hand, we found that MAP-Elites seemed to decrease performance of the NS variant in that ME-
NS performed worse than NS (although not with statistical significance, Table 9, Appendix A). Thus, future 
researchers may find value in avoiding this combination.  

Our second objective was to investigate the impact of MAP-Elites on the ability of OS, NS, and ONS to explore 
the behaviour search space. We found that MAP-Elites did not significantly improve Coverage, or Global 
Reliability. However, MAP-Elites did significantly improve our ability to analyse how behaviour related to 
task performance. Visualisations of the map enabled us to clearly determine the importance of Number of 
Passes in achieving high performing agents and gave us clear indications of high performance and low 
performance regions. We posit that MAP-Elites is highly effective as an illumination algorithm and provides 
great insight into how to perform follow up research. 



 

 

 
Figure 24: Maximum task performance (average hold time, see 2.1.2 and 3.2.3) over 10 runs over the 
first 25 generations for ME-OS, ME-NS, and ME-ONS. The figure shows how ME-OS was able to leap 

ahead of both ME-NS and ME-ONS in performance as early as generation 4. 

0 5 10 15 20 25 30

Generation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Maximum Normalised Task Performance in Population for ME-OS, ME-NS and ME-ONS for first 30 Generations

ME-OS
ME-NS
ME-ONS

 

Figure 25: Average task performance (performance (average hold time, see 2.1.2 and 3.2.3) over 10 runs for 
ME-OS, ME-NS, and ME-ONS). The figure demonstrates how ME-OS is able to consistently produce a higher 

performing population of genomes throughout evolution. 
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Figure 26: Average task performance (average hold time, see 2.1.2 and 3.2.3) over 10 runs for the first 25 
generations: for ME-OS, ME-NS, and ME-ONS. The figure shows how ME-OS was able to produce a 

population that had higher performance on average from as early as generation 1. 
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Figure 27: Maximum task performance (average hold time, see 2.1.2 and 3.2.3) over 10 runs for OS and ME-
OS. The figure shows similar oscillatory performance until late in evolution when a leap of performance was 

discovered by ME-OS. 
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Figure 28: Average task performance (average hold time, see 2.1.2 and 3.2.3) over 10 runs for OS and 
ME-OS. The figure shows how on average, the population produced by ME-OS was able to outperform OS. 
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Figure 29: Maximum task performance (average hold time, see 2.1.2 and 3.2.3) over 10 runs for NS and 
ME-NS. The figure shows how on average, the population produced by ME-NS was able to outperform NS. 
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Figure 30: Average task performance (average hold time, see 2.1.2 and 3.2.3) over 10 runs for NS and 
ME-NS. The figure shows how on average, the population produced by ME-NS was able to outperform NS. 
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Figure 31: Maximum task performance (average hold time, see 2.1.2 and 3.2.3) over 10 runs for ONS and 
ME-ONS. Annotation A and B denote the generations at which peak performance was discovered for ONS, 

and ME-ONS respectively. 
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Figure 32: Average task performance (average hold time, see 2.1.2 and 3.2.3) over 10 runs for ONS and 
ME-ONS. The figure shows how similar the performance was for the variant’s populations. 
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Figure 33: Interpolated task performance (average hold time, see 2.1.2 and 3.2.3) heat map for OS (top 
row) and ME-OS (bottom row) for each behaviour descriptor combination. 

 

Figure 34: Interpolated task performance (average hold time, see 2.1.2 and 3.2.3) heat map for NS (top 
row) and ME-NS (bottom row) for each behaviour descriptor combination. 



 

 

 

 

Figure 35: Interpolated task performance (average hold time, see 2.1.2 and 3.2.3) heat map for ONS (top 
row) and ME-ONS (bottom row) for each behaviour descriptor combination. 

 

Figure 36: Normalised task performance (average hold time, see 2.1.2 and 3.2.3) behaviour space for 
ME-OS. Annotation A indicates best performing elite in the map. Annotation B indicates an extended 

region of exploration. 



 

 

 

  

 

Figure 37: Normalised task performance (average hold time, see 2.1.2 and 3.2.3) behaviour space for 
ME-NS. Annotation A indicates best performing elite in the map. Annotation B indicates an extended 

region of exploration. 

 

Figure 38: Normalised task performance (average hold time, see 2.1.2 and 3.2.3) behaviour space for 
ME-ONS. Annotation A indicates best performing elite in the map. Annotation B indicates an extended 

region of exploration. 



 

5 Conclusion 

In this thesis, our primary research objective was to assess the value of incorporating an illumination 
algorithm into objective, non-objective and hybrid search in the context of multi-agent systems. We made 
this assessment by way of experimentation in which we evaluated task performance and the ability of these 
methods to explore the behaviour search space. 

Our experiments and analysis allowed us to explore the impact on exploration and exploitation of the 
search space, and develop recommendations for future researchers looking to evolve, and develop high 
performing agents in collective behaviour tasks.  The subsequent sections provide a summary of the 
contributions made by this study as well as potential future avenues for research. 

5.1 Contributions 

We found that combining hybrid search with an illumination algorithm like MAP-Elites has a positive 
impact on the ability to evolve high performing cooperative agents in a complex system. We also found that 
combining MAP-Elites with Novelty search doesn’t appear to have a positive benefit on either exploitation 
to develop high task performance, or exploration of the search space to discover more behaviour types. In 
general, this study also showed the explanative power of illumination to understand the behaviour space 
of the agents. The ability to visualise, analyse and explore the behaviour space thanks to the map of elites 
enabled us to discover and demonstrate that one key behaviour (Number of passes) had the greatest impact 
on task performance.  

Based on our results it would seem that those looking to develop adaptive collective robotic controllers for 
complex tasks would do well to implement some combination of hybrid search and an illumination 
algorithm. In our Keep-away case study, it was clear that illumination can highlight behaviours of most 
importance to the task. This is an important contribution to consider for practical application. For example, 
our results indicate that developers of Keep-away robots should concentrate development on the ability of 
the robot to effectively pass the ball as many times as possible. Perhaps this would mean developing a fast-
kicking action, and the ability to quickly target a fellow keeper, rather than spending time developing the 
robots’ ability to traverse the field quickly or keep the ball in a certain area of the field. This 
recommendation can also be applied to other multi-agent, collective tasks such multi-robot search and 
rescue applications. In such a scenario, the knowledge of key behaviours would enable practitioners to 
direct design and development efforts towards the elements that most strongly benefit performance. 

Although not a focus of this study, we were interested to understand the impact on evolutionary 
performance and behaviour space exploration that novelty search could have as compared to MAP-Elites 
as an illumination algorithm. We found that at least in the case of Keep-away, illumination was more 
effective than novelty search in exploring the high-performance behaviour space.  

5.2 Known Limitations 

In this research we conducted 10 independent iterations for each of the 6 variants (OS, NS, ONS, ME-OS, 
ME-NS, ME-ONS). This limited dataset meant that we were not always able to find statistical significance. 
Future researchers should perform 20 independent iterations for each variant in order to overcome this 
limitation.  

Experimentation were computationally heavy and this limited our ability to conduct longer evolutionary 
runs. There was some evidence that more leaps in performance may be available if evolution could 
continue. Our recommendation is that future researchers conducting similar experiments run experiments 
for between 600 and 1000 generations.  

5.3 Future 

In future research we recommend that more behaviour descriptors are investigated to determine whether 
there are other behaviour traits that could aid our understanding of the behaviour space beyond the three 
behaviour traits investigated so far. 

We also suggest considering additional Keep-away behaviour descriptors to ascertain if there exist other 
traits that could contribute to a more comprehensive understanding of the behaviour space, beyond the 



 

three traits included in this study. Future researchers should consider including distance travelled, length 
of pass (distance between keepers when passing the ball), angles between keepers and takers. 

In previous research, Didi [8] explored solution complexity (topological complexity of evolved CPPNs) and 
we posit that it would be valuable to understand the impact of MAP-Elites on this point of interest. Didi [8] 
also made an important contribution by analysing the impact of increasing task complexity up to 6 vs. 5 
Keepaway and future researchers are encouraged to replicate this scheme of increasing task complexity 
for experiments conducted in this research. 

Finally, we were constrained by the time it took for experiments to run and thus recommend that future 
researchers consider refactoring and modifying the simulation and evolution framework to run 
asynchronously in parallel. Computational evolution inherently lends itself to parallel processing owing to 
the fact that an entire population of agents could be simulated in parallel with no interdependence. If such 
a modification were to be made, we anticipate a speed improvement of up to 150 times (assuming a 
population of 150). 
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Appendix A: Statistical Tests  

The experiments were conducted iteratively ten times for each variant, and the optimal performance achieved during each 
evolutionary run was documented for subsequent statistical analysis. The Lilliefors test [51] was utilized to categorize 
datasets as either non-parametric or belonging to the normal distribution. 

Upon analysis, it was observed that Task Performance and Search Fitness data exhibited non-parametric behavior for the 
OS variant, while conforming to a normal distribution for all other variants. Similarly, Coverage data displayed non-
parametric tendencies for the ME-ONS variant, contrasting with the normal distribution observed in other variants. Global 
reliability data, however, exhibited a normal distribution across all variants. 

Given these varied outcomes, we proceeded to perform statistical testing using the two-sided Wilcoxon rank sum test, which 
is equivalent to the Mann-Whitney U-Test (p < 0.05) [52]. This test was chosen for its suitability in comparing pairs of 
datasets, irrespective of whether they followed a parametric or non-parametric distribution. The statistical tests were 
conducted through pair-wise comparisons among datasets corresponding to different method variants and p values from 
statistical test results are provided in Table 9-14. 

Task performance 
  OS NS ONS ME-OS ME-NS ME-ONS 
OS  NaN   0.070   0.880   0.623   0.028   0.345  
NS  0.070   NaN   0.162   0.070   0.970   0.325  
ONS  0.880   0.162   NaN   0.273   0.037   0.880  
ME-OS  0.623   0.070   0.273   NaN   0.021   0.427  
ME-NS  0.028   0.970   0.037   0.021   NaN   0.545  
ME-ONS  0.345   0.325   0.880   0.427   0.545   NaN  

Table 9: Task performance statistical tests for pair-wise comparison at 95% confidence interval (p < 0.05, Wilcoxon rank sum 
test) for each variant (OS, NS, ONS, ME-OS, ME-NS, ME-ONS). 

Global fitness 

  OS NS ONS ME-OS ME-NS ME-ONS 

OS  NaN   0.070   0.880   0.623   0.028   0.345  

NS  0.070   NaN   0.162   0.070   0.970   0.325  

ONS  0.880   0.162   NaN   0.273   0.037   0.880  

ME-OS  0.623   0.070   0.273   NaN   0.021   0.427  

ME-NS  0.028   0.970   0.037   0.021   NaN   0.545  

ME-ONS  0.345   0.325   0.880   0.427   0.545   NaN  
Table 10: Global fitness statistical tests for pair-wise comparison at 95% confidence interval (p < 0.05, Wilcoxon rank sum test) for each 
variant (OS, NS, ONS, ME-OS, ME-NS, ME-ONS). 

Coverage 

  OS NS ONS ME-OS ME-NS ME-ONS 

OS  NaN   0.385   0.623   0.521   0.910   0.791  

NS  0.385   NaN   0.496   0.089   0.212   0.121  

ONS  0.623   0.496   NaN   0.140   0.571   0.173  

ME-OS  0.521   0.089   0.140   NaN   0.473   1.000  

ME-NS  0.910   0.212   0.571   0.473   NaN   0.791  

ME-ONS  0.791   0.121   0.173   1.000   0.791   NaN  
Table 11: Coverage statistical tests for pair-wise comparison at 95% confidence interval (p < 0.05, Wilcoxon rank sum test) for each variant 
(OS, NS, ONS, ME-OS, ME-NS, ME-ONS). 

Global reliability 

  OS NS ONS ME-OS ME-NS ME-ONS 

OS  NaN   0.045   0.038   0.910   0.021   0.162  

NS  0.045   NaN   0.734   0.089   1.000   0.186  

ONS  0.038   0.734   NaN   0.026   0.734   0.186  



 

ME-OS  0.910   0.089   0.026   NaN   0.054   0.571  

ME-NS  0.021   1.000   0.734   0.054   NaN   0.307  

ME-ONS  0.162   0.186   0.186   0.571   0.307   NaN  

Table 12: Global reliability statistical tests for pair-wise comparison at 95% confidence interval (p < 0.05, Wilcoxon rank sum test) for each 
variant (OS, NS, ONS, ME-OS, ME-NS, ME-ONS). 

Search fitness 

  OS NS ONS ME-OS ME-NS ME-ONS 

OS  NaN   0.021   0.162   0.623   0.011   0.241  

NS  0.021   NaN   0.140   0.014   0.473   0.307  

ONS  0.162   0.140   NaN   0.186   0.241   0.734  

ME-OS  0.623   0.014   0.186   NaN   0.011   0.345  

ME-NS  0.011   0.473   0.241   0.011   NaN   0.910  

ME-ONS  0.241   0.307   0.734   0.345   0.910   NaN  
Table 13: Search fitness statistical tests for pair-wise comparison at 95% confidence interval (p < 0.05, Wilcoxon rank sum test) for each 
variant (OS, NS, ONS, ME-OS, ME-NS, ME-ONS). 

Population task performance at best generation (respectively to each variant) 

  OS NS ONS ME-OS ME-NS ME-ONS 

OS  NaN   0.000   0.046   0.353   0.028   0.044  

NS  0.000   NaN   0.031   0.000   0.051   0.033  

ONS  0.046   0.031   NaN   0.001   0.881   0.880  

ME-OS  0.353   0.000   0.001   NaN   0.001   0.001  

ME-NS  0.028   0.051   0.881   0.001   NaN   0.935  

ME-ONS  0.044   0.033   0.880   0.001   0.935   NaN  
Table 14: Task performance statistical tests for the population of genomes at the generation that produced the best task performance for each 
variant respectively. Pair-wise comparison conducted at 95% confidence interval (p < 0.05, Wilcoxon rank sum test) for each variant (OS, NS, 
ONS, ME-OS, ME-NS, ME-ONS). 


