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Abstract. Malware attacks remain a critical cyber-security concern,
necessitating robust detection solutions for both individuals and
organizations. Deep learning methods, including Convolutional Neural
Networks (CNNs) and Multi-Layer Perceptrons (MLPs), have become
integral to malware detection and classification. However, real-world
malware datasets, such as Elastic Malware Benchmark for Empowering
Researchers (EMBER), present heterogeneous features that differ in
type, scale, and representation. This heterogeneity poses a significant
challenge for traditional deep-learning methods, which often assume
homogeneity in the input features, resulting in suboptimal learning and
detection performance. Moreover, the rapid evolution of malware
strains introduces further complexity, as conventional models struggle
to adapt to novel patterns.

This study proposes a hybrid Multi-Branch MLP and CNN model that
handles heterogeneous malware feature groups through dedicated
branches to better capture local and global patterns. The model adapts
to evolving, heterogeneous malware data and outperforms conventional
models, as demonstrated using the EMBER dataset.

Keywords: Convolutional Neural Network - Deep Learning
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1 Introduction

Recently, the surge in malware threats has prompted extensive research into
effective detection methods, with a particular focus on dynamic and static
analyses [1,2]. Static analysis examines features of binary programs without
execution [3], offering a resource-efficient and secure approach, but often fails
to accurately capture the behavior of runtime malware. In contrast, dynamic
analysis monitors program execution to extract behavioral features [4],
providing richer information but requiring customized runtime environments,
such as virtual machines, which can be computationally expensive for
large-scale datasets.
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Windows remains a predominant platform for malware attacks, and most
threats target Windows PE files [5]. Consequently, this study focuses on
adaptive classifiers for Windows PE malware, addressing both detection
efficiency and robustness. Traditional signature-based detection methods [6] are
limited to known malware, highlighting the need for approaches capable of
generalizing to unseen or zero-day malware [7].

The multi-layer perceptron (MLP) is a widely adopted supervised neural
network architecture, trained using backpropagation, and has been shown to be
particularly effective in malware detection due to its ability to capture complex,
nonlinear relationships in high-dimensional data [8,9].

To further improve feature representation, researchers have proposed
multi-branch MLP architectures, where separate branches process distinct
groups of features before their outputs are combined. This approach has been
successfully applied in intrusion and malware detection tasks, with
multi-branched perceptron networks achieving near-optimal detection rates
and attention-enhanced MLP variants surpassing 99% accuracy in benchmark
evaluations [10].

Beyond malware detection, the multi-branch MLP has been explored as a
general solution for training on complex and high-dimensional datasets. In
many real-world applications, the abundance of nonlinear features complicates
the learning of effective decision boundaries. Multi-branch designs address this
by decomposing the input into multiple parallel shallow MLPs, each
responsible for a feature subset, while a selector or aggregator branch
integrates these outputs to improve classification performance [11].

In recent years, deep learning (DL) has emerged as a powerful tool for
malware detection [12], leveraging the capacity of neural networks to model
complex, nonlinear relationships across diverse feature sets. However,
real-world malware datasets, such as EMBER [13], present heterogeneous
features, including byte histograms, entropy measures, string metadata,
headers, sections, imports and exports, and data directories that differ in type,
scale, and representation. Traditional CNNs and MLPs often struggle to learn
effectively from such heterogeneous data, limiting detection performance and
adaptability in fast-evolving malware landscapes [14-16].

To overcome these challenges, this study proposes a Hybrid Multi-Branch
MLP and CNN framework, where each feature group is processed by a
dedicated branch. The CNNs extract local patterns from histogram and
entropy features, while MLP branches learn representations from structured
and categorical metadata. These branches are then merged to capture
complementary relationships across the heterogeneous dataset, providing a
unified representation for malware classification.

The key contribution of this research is the demonstration of the effectiveness
of a Hybrid CNN+MLP architecture in learning from heterogeneous malware
features, enabling accurate and robust detection of Windows PE malware across
diverse and complex datasets.
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2 Research Aim and Questions

2.1 Research Aim

The aim of this research is to investigate the effectiveness of a hybrid neural
network architecture, combining CNNs and MLPs, for improving malware
detection accuracy on structured and distributional features in the EMBER
2018 dataset. Specifically, the study explores whether leveraging
modality-specific processing for histogram and entropy features via CNNs,
alongside tabular metadata features via MLPs, can outperform conventional
single-architecture approaches.

2.2 Research Questions
This study seeks to answer the following research questions:

1. Evaluate the hybrid CNN+MLP model task-performance in terms of
accuracy, precision, recall, Fl-score, and ROC-AUC compared to
standalone MLP and CNN models on the EMBER 2018 dataset.

2. Evaluate which feature groups (histogram, entropy, metadata, imports and
exports, sections) contribute most significantly to the performance of the
hybrid model.

3. Test if the hybrid CNN+4+MLP architecture demonstrates superior
generalization across unseen data, especially in the presence of class
imbalance, compared to traditional models.

4. Evaluate the capability of the hybrid architecture to reduce specific error
types (false positives and false negatives) relative to standalone MLP or
CNN architectures, particularly for malware samples with subtle statistical
or structural anomalies.

3 Methods and Experiments

This study investigates the effectiveness of three neural network architectures
for malware detection using the EMBER 2018 dataset [13]. The dataset
provides a heterogeneous feature space that includes both high-dimensional
structured vectors (including imports, exports, headers and strings) and
grid-based feature representations (such as histograms and entropy). Each
feature group has distinct characteristics, motivating the use of models tailored
to its specific type.

3.1 Dataset

The 2018 EMBER (Elastic Malware Benchmark for Empowering Researchers)
dataset [13] is a publicly available benchmark resource compiled to advance
machine learning-based malware detection. It encompasses a comprehensive set
of features extracted from Windows Portable Executable (PE) files, covering
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both benign and malicious samples. This ensures that the evaluation of
classification models is both reproducible and standardized. In total, the
dataset contains feature representations from approximately 1.1 million PE
files, comprising 900,000 training instances (300,000 malicious, 300,000 benign,
and 300,000 unlabeled) and 200,000 test instances, evenly divided between
100,000 malicious and 100,000 benign samples.

EMBER was released by Endgame and researchers at MITRE to provide a
standardized, large-scale dataset for malware detection. It addresses limitations
of previous datasets by offering consistent feature extraction, a diverse set of
malware families, and metadata suitable for both traditional machine learning
and deep learning methods.

Heterogeneous Features: The dataset contains multiple types of features
that capture complementary aspects of PE files:

— Histogram and Entropy Features: Each with 256 values representing byte
distributions and entropy measures. These features represent local byte-level
patterns and are compatible with CNN after reshaping into 16x16 single-
channel images.

— Metadata Features: General file metadata such as size, number of sections,
linker version, and image base. These tabular features capture high-level key
file properties that often distinguish benign files from malware.

— Header, Section, Imports and FEzxports Features: There are structured
numeric and categorical features that capture the program’s structure,
including section names, imported and exported functions, and other
header-level details. These features provide additional semantic information
that complements the raw byte-level statistics.

3.2 Dataset preparation

After filtering out unlabeled samples (label = -1), features were normalized or
reshaped according to the model architecture. Specifically, histogram and
entropy features were reshaped to 16x16 images for CNN processing, while
tabular metadata features remained as vectors for MLP processing. This
heterogeneous structure allows hybrid CNN+MLP models to exploit both
spatial byte-level patterns and high-level semantic metadata for improved
malware detection performance.

3.3 Neural Network Architectures

We implemented and evaluated three neural network architectures under
identical training conditions to assess their performance on the EMBER
dataset: (i) a Multi-Branch MLP, (ii) a pure CNN, and (iii) a hybrid
CNN+MLP model. Each model was trained with the Adam optimizer and
sparse categorical cross-entropy loss for 50 epochs (batch size 256), using 20%
of the training data for validation. To address class imbalance, class weights
were computed dynamically.
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3.3.1 Multi-Branch MLP: The EMBER dataset provides 2381 static
features per binary, which we partitioned into nine feature groups: histogram
(256), entropy (256), strings (104), general metadata (10), header (62), section
(255), imports (1280), exports (128), and data directory (30). Each group was
normalized independently using StandardScaler.

Each feature group was processed by a dedicated dense block consisting of
a ReLU-activated dense layer, batch normalization, and dropout (p = 0.3). The
number of hidden units was scaled by input dimensionality: 256 (imports), 128
(histogram, entropy, section), 64 (strings, header, exports), and 32 (general, data
directory). Outputs from all branches were concatenated and passed through two
dense layers (512 and 256 units, each with Batch Normalization and Dropout),
followed by a softmax output layer for binary classification.

3.3.2 Pure CNN Model: To exploit spatial patterns in malware features,
all EMBER feature groups were reshaped into two-dimensional matrices with
a single channel, for example histogram (16 x 16), entropy (16 x 16), imports
(40 x 32), strings (13 x 8).

Each branch consisted of two convolutional blocks, each comprising a
Conv2D layer, max-pooling (with pool size adapted to the feature dimensions),
batch normalization, and dropout (p = 0.3), followed by flattening. The
resulting feature maps from all branches were combined and passed through
fully connected layers with 512 and 256 units, each with ReLLU activation and
dropout (p = 0.4), then passed to a softmax output layer for binary
classification.

3.3.3 Hybrid CNN+MLP (Proposed): The proposed hybrid
architecture integrates convolutional neural networks (CNNs) for statistical
feature distributions with multi-layer perceptrons (MLPs) for structured
metadata.

— CNN branch: Histogram (256) and entropy (256) features were reshaped
into 16 x 16 grayscale matrices. Each input passed through two convolutional
blocks followed by flattening to produce feature embeddings.

— MLP branch: Structured metadata consisted of strings (104), general
metadata (10), headers (62), sections (255), imports (1280), exports (128),
and data directory (30). Each feature group was normalized and passed
through a dense block consisting of fully connected layers, batch
normalization, and dropout. The number of units in each block was scaled
according to input dimensionality as given in the Algorithm 1.

Outputs from CNN and MLP branches were combined and passed through
two fully connected layers, followed by a softmax output layer, as illustrated in
Figure 1.
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3.4 Rationale for Hybrid Architecture

The hybrid CNN+MLP leverages complementary inductive biases:

— CNN capture local relationships and spatial dependencies in statistical
distributions (histogram and entropy).

— MLPs model nonlinear relationships in structured tabular metadata,
headers, imports/exports, and sections.

— Feature fusion enables joint reasoning over spatial and structured
representations, improving detection accuracy and generalization.

This design, illustrated in Figure 1, integrates spatial and structured
perspectives into a unified classification framework.

Algorithm 1 Hybrid CNN + MLP for EMBER Malware Classification

Require: EMBER dataset features X € RY*F labels y € {0,1}", epochs E,
batch size B
Ensure: Trained hybrid CNN+MLP model
1: Split features into groups: Histogram, Entropy, Strings, General
metadata, Header, Section, Imports, Exports, Data Directory
2: Reshape CNN features: Histogram and Entropy — 16 x 16 x 1
3: Normalize remaining feature groups
4: Define CNN branches: Apply two Conv2D+ReLU layers with
MaxPooling and Dropout, then Flatten (for Histogram and Entropy)
5. Define MLP branches: For each non-CNN feature group, apply
Dense+ReLU, BatchNorm, Dropout
Combine all branches: Concatenate CNN and MLP outputs
Fusion MLP: Two Dense+ReL.U layers with BatchNorm and Dropout
Output layer: y,,eq < Dense(2, Softmax)
Train model: Minimize sparse categorical cross-entropy over E epochs with
batch size B and class weights
10: return Trained hybrid CNN+MLP model

3.5 Performance Evaluation

A stratified 80/20 train-test split was applied and subsequently, 20% of the
training set was used as validation data for model tuning. Each model was trained
five times with random seed. The Table 3 shows the evaluation metrics that
were applied to evaluate performance, that includes accuracy, precision, recall,
Fl-score and ROC-AUC. This approach enables fair comparison of malware
detection methods.
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Table 1: Hybrid CNN + MLP Architecture for Malware Detection

Layer (Type) Output Shape |Kernel |Activation |Dropout
/ Units
CNN Branches (applied to both hist_input (16x16x1) and entropy_input (16x16x1))
Conv2D (16,16, 32) 3x3 |RelU 0.3
MaxPooling2D (8,8,32) 2x2 |- -
Conv2D (16,16, 32) 3x3 |RelU 0.3
MaxPooling2D (4,4,64) 2x2 |- -
Flatten (16,16, 32) - -
Conv2D (1024,) - - -

MLP Branches (per feature group input, with Batch Normalization)
strings-input (10,) - Dense 64 RelU 0.3
general-input (10,) - Dense 32 RelU 0.3
header-input (62,) - Dense 64 RelU 0.3
section-input (255,) - Dense 128 RelU 0.3
imports-input (128,) - Dense 256 RelU 0.3
exports-input (128,) - Dense 64 RelU 0.3
datadir-input (30,) - Dense 32 RelU 0.3
Fusion Layers (after concatenation, 3200 features, with Batch Normalization + Dropout)
Dense - 512 RelU 0.3
Dense - 512 RelU 0.3
Dense (Output) 2 - Softmax -

3.6 Experiments

Experiments aimed to validate the following hypotheses:

— A hybrid CNN+MLP architecture Figure 1 that processes histogram and
entropy features via CNN and metadata features via MLP achieves malware
classification performance (accuracy, precision, recall, F1-score, ROC-AUC)
superior to standalone CNN or MLP architectures on the EMBER 2018

dataset.

— Feature-specific machine learning method that combines CNN and MLP to
handle heterogeneity in the dataset improves generalization and robustness,
leading to reduced false positives and false negatives compared to single-
architecture baselines.
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Table 2: Method and Experiment Parameters.

Experiments
Training data Section 3.1
Training, validation, ||80%, 10%, 10% data
testing subsets
Initialization (weights) Random
Epochs 50
Batch Size 256
Runs 5
Validation Split 0.2
Evaluation (fitness) metric||Table 3

— The hybrid CNN+MLP model demonstrates statistically significant
improvements in ROC-AUC and Fl-score, confirming the advantage of
modality-aware architectures in malware detection.

Our malware dataset comprises Windows PE binary files, where the
dataset, denoted as D, consists of two classes (benign and malicious) with N
total instances (Section 3.1). The training set T' is drawn from D and employed
to train the classifiers:

T, CN,CD;, 1€1,2 (1)

This ensures a training process that allows models to learn discriminative
patterns and characteristics across feature groups. Method and experiment
parameters are presented in Table 2, while evaluation metrics are defined in
Table 3.

We conducted three sets of experiments:

Benchmark CNN Classifier: A re-implementation of a CNN architecture
inspired by prior malware detection studies [15], adapted to process histogram
and entropy feature representations with a convolutional architecture. This
model serves as a strong baseline for evaluating malware classification
performance.

Multi-Branch MLP Classifier: A multi-input architecture where each feature
group from EMBER is passed through its own dense branch before feature fusion.
This setup evaluates the discriminative power of structured tabular features
without convolutional processing.

Hybrid CNN4+MLP Classifier (Proposed): Our main contribution integrates
convolutional branches for histogram and entropy features (reshaped as
grayscale images) with multi-branch MLPs for all remaining tabular feature
groups (Algorithm 1). Fusion layers combine all the representations learned
before classification. The design and parameter configuration of our proposed
Hybrid CNN+MLP architecture are outlined in Table 1 and Figure 1.
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Table 3: Malware classification performance metrics.

Metric Formula Description
True Positive (TP) tp=>7 Total malware correctly
predicted
False Positive (FP) fo=%7 Total benign incorrectly
predicted
True Negative (TN) tn=>7 Total benign correctly predicted
False Negative (FN) fn=>7 Total malware  incorrectly
predicted
Accuracy % Rate of correct predictions
Precision TPZ% Positive Predictive values
Recall % True positive rate
F1-score %m Harmonic mean of precision
and recall
ROC-AUC score Probability the model ranks a
) positive above a negative
/ TPR(FPR) d(FPR)
0

For each model, classification performance was measured using accuracy,
precision, recall, Fl-score, and ROC-AUC. To mitigate variance due to
random initialization, all results were averaged over 5 runs with different seeds.

Table 4: Architectural Performance on the EMBER 2018 Dataset
Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) ROC-AUC (%)
MLP 97.46 £ 0.15 97.5 £ 0.11 97.6 + 0.2 97.6 + 0.2 98.4 + 0.3
CNN 75.72 £ 3.56 83.0 £ 0.4 71.7 £ 0.3 70.6 + 0.3 82.13 +£ 0.22
Hybrid 97.62 £ 0.08 97.8 £0.09 978 +£0.1 97.7£0.13 99.6 £ 0.08

4 Results and Discussion

The experimental results indicate that the Hybrid CNN+MLP architecture
consistently achieves faster convergence and higher classification accuracy
compared to the standalone CNN and MLP models (Figure 2). The MLP-only
model exhibits high accuracy, closely following the hybrid approach. The
CNN-only model converged quickly but plateaued early, suggesting limited
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capacity to fully exploit tabular metadata features. In contrast, the MLP-only
model  demonstrated stable convergence but lacked fine-grained
representational power for histogram and entropy features. By combining CNN
branches for histogram and entropy with MLP branches for metadata, the
Hybrid model achieved both accelerated convergence and higher final
validation accuracy. Notably, the validation accuracy curve of the CNN-only
model fluctuates more compared to the smoother trajectories observed for the
MLP and Hybrid models, which is consistent with known behaviors in deep
learning models when trained on heterogeneous feature types.

Across multiple validation runs (n = 5), the Hybrid CNN+MLP model
achieved an average validation accuracy of 97.71 4+ 0.08, whereas the MLP-only
baseline reached 97.45 + 0.15 and the CNN-only baseline reached 75.72 + 3.56.
These results suggest a strong performance advantage for the Hybrid and MLP
models compared to CNN.

4.1 Statistical Evaluation

To evaluate performance differences, multiple statistical tests were conducted.
The paired t-test comparing Hybrid and MLP yielded ¢t = 4.27, p = 0.0235,
indicating a significant improvement at the 5% level, whereas the Wilcoxon
signed-rank test (W = 0.000, p = 0.125) was not significant, reflecting the
conservative nature of non-parametric methods.

The Hybrid model significantly outperformed CNN, as indicated by the
Mann-Whitney U test (U = 16.000, p = 0.0286). Across all three models, the
Friedman test revealed significant differences (x?> = 8.000, p = 0.0183).
Post-hoc Mann—Whitney tests confirmed that Hybrid exceeded both MLP
(p = 0.0294) and CNN (p = 0.0286), and MLP outperformed CNN
(p = 0.0294). Paired ¢-tests for MLP vs. CNN and Hybrid vs. CNN (p = 0.0011
for both) further highlighted highly significant differences, whereas Wilcoxon
tests remained non-significant.

Overall, these analyses show that the Hybrid model consistently outperforms
CNN and offers modest gains over MLP, though the difference between Hybrid
and MLP is not significant under conservative non-parametric tests.

4.2 Quantitative Performance Summary

Table 4 summarizes the quantitative metrics for all three architectures. The
Hybrid CNN+MLP model outperformed both baselines across key metrics
including accuracy, precision, recall, Fl-score, and ROC-AUC. Notably, the
Hybrid model achieved a ROC-AUC of 0.996, demonstrating superior
discriminatory power in distinguishing benign from malicious samples by
jointly leveraging histogram and entropy distributions and metadata features.
The hybrid approach reduces false negatives observed in CNN-only models
(malware with subtle distributional anomalies) and false positives observed in
MLP-only models (benign samples with unusual entropy patterns). These results
illustrate that combining convolutional and fully connected pathways effectively
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exploits complementary inductive biases present in the EMBER 2018 feature
set.

4.3 Contributions

The key contribution of this research is the empirical evidence that integrating
convolutional processing for distributional features with fully connected layers
for metadata significantly enhances malware classification performance
compared to standalone CNN or MLP architectures. As summarized in Table
4, the Hybrid CNN+MLP model consistently outperformed both baselines
across all evaluation metrics, achieving the highest accuracy (97.6%), precision
(97.8%), recall (97.8%), Fl-score (97.7%), and ROC-AUC (99.6%). The model
also demonstrated faster convergence, smoother validation trajectories, and
improved robustness under class imbalance conditions.

These contributions directly address the research questions posed in this
study:

— The Hybrid CNN+MLP achieved superior accuracy and ROC-AUC
compared to both MLP and CNN baselines. Statistical tests confirmed that
the Hybrid model significantly outperformed CNN, while its improvement
over MLP was more modest and less consistent under non-parametric
evaluation. This demonstrates that hybridization offers a tangible
performance gain over single architectures.

— By combining convolutional layers for byte-distributional features
(histogram, entropy) with fully connected layers for structured metadata
(sections, imports, exports), the Hybrid architecture leveraged
complementary feature spaces. The results show that neither CNN nor
MLP alone fully captured this heterogeneity, highlighting the added value
of integrating distributional and metadata signals.

— The Hybrid model showed smoother wvalidation curves and superior
performance under class imbalance, confirming stronger generalization. Its
higher ROC-AUC and more stable precision-recall trade-offs indicate
robustness when applied to unseen or skewed datasets, thereby answering
the generalization question affirmatively.

— The Hybrid architecture reduced both false positives and false negatives
compared to standalone baselines. In particular, it was more effective at
detecting malware with subtle structural or statistical anomalies,
demonstrating that  hybridization improves robustness against
difficult-to-classify samples.

In summary, the Hybrid CNN-+MLP architecture not only improves
classification performance but also enhances generalization and robustness
under class imbalance conditions. By aligning the model architecture with the
multi-modal nature of EMBER features, the hybrid approach provides a
practical and effective solution for malware detection in real-world scenarios.
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5 Conclusion

This study demonstrated and rigorously evaluated a hybrid CNN+MLP
architecture for malware detection on the EMBER 2018 dataset. The proposed
model leveraged CNN branches to extract features from histogram and entropy
distributions, while MLP branches processed tabular metadata, enabling joint
reasoning across heterogeneous feature types.

The results establish a robust framework for adaptive, multi-modal
malware detection. Future work will investigate extending hybrid architectures
to additional malware families, incorporating richer feature sets, and applying
techniques such as data augmentation and adversarial training to improve
generalization. The long-term goal is to develop self-adapting malware
classifiers capable of maintaining high detection performance against evolving
threats [17], contributing to the broader vision of autonomous and efficient
computational and cyber-physical systems [18-20].
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Fig.1: Hybrid CNN+MLP Architecture: Multi-branch design where CNN
branches (left) extract spatial patterns from histogram and entropy features,
while MLP branches (right) process structured metadata, header, imports,
exports, and section features. Feature representations from all branches are
merged for joint learning, enabling the model to leverage both local patterns
and global feature dependencies for robust malware classification.
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Fig.2: Average training and validation accuracy over 5 runs for the classifiers:
Hybrid (CNN+MLP), MLP-only, and CNN-only. Each plot shows both training
and validation performance curves, except for the CNN, which exhibits

noticeably lower validation accuracy.
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