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Abstract

Data augmentation is an intuitive solution to increase the di-
versity of training instances in the machine learning commu-
nity. Mixup is acknowledged as an effective and efficient mix-
based data augmentation method, following a linear align-
ment assumption that the linear interpolations of features
align the corresponding linear interpolations of labels. Un-
fortunately, this assumption can be violated in many complex
scenarios, resulting in augmented instances with noisy labels,
especially for regression problems. To solve this problem,
we propose an easy-to-implement mixup method, namely
DEnosing MIXUP (DE-MIXUP), which iteratively corrects
the noisy response targets by leveraging an auxiliary noise
estimation task with mixup deep features. Additionally, we
suggest an efficient optimization method with alternating di-
rection method of multipliers. We compare DE-MIXUP with
the existing mixup variants and other prevalent data augmen-
tation methods across benchmark regression datasets. Empir-
ical results indicate the effectiveness of DE-MIXUP under the
in-distribution and out-of-distribution cases.

Introduction

Modern machine learning algorithms often require abundant
training instances to maintain high performance. However,
acquiring and labeling instances is intractable and labor-
intensive in many real-world scenarios, resulting in scarce
data. An intuitive solution is data augmentation, which refers
to strategies to increase the diversity of training instances,
rather than acquiring more real instances. Data augmenta-
tion has been proven effective and efficient (Zha et al. 2024),
and many data augmentation strategies have recently been
proposed to handle various data modalities such as images
(Xu et al. 2023) and texts (Feng et al. 2024).

Among existing strategies, mixup is a modality-
independent and, more significantly, straightforward-yet-
effective mix-based data augmentation method (Zhang et al.
2018; Cao et al. 2024). Formally, mixup follows a linear
alignment assumption that the linear interpolations of fea-
tures align the corresponding linear interpolations of la-
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bels; accordingly, it generates augmented instances by lin-
early interpolating any two labeled instances. During the
past decade, many variants of mixup have been investigated
to adapt various scenarios (Guo, Mao, and Zhang 2019;
Venkataramanan et al. 2020; Hwang and Whang 2021; Yao
et al. 2022; Greenewald et al. 2021; Bouniot, Mozharovskyi,
and d’Alché-Buc 2024). For example, manifold mixup di-
rectly interpolates hidden states to regularize augmented
data (Verma et al. 2019); k-mixup extends mixup by using
multiple (k) points instead of only pairs of points (Gree-
newald et al. 2021); local mixup proposed a loss function
with weights based on the distance between pairs of mixed
samples, effectively reducing the impact of augmented in-
stances that are out-of-distribution (Baena, Drumetz, and
Gripon 2022). Although the simplicity of mixup and its vari-
ants, they have been successfully applied to a wider range of
applications and achieved promising performance improve-
ments (Guo 2020; Franchi et al. 2021; Han et al. 2022).

Despite the simplicity and effectiveness of mixup, its ba-
sic linear alignment assumption can be violated in many
complex scenarios (Kou et al. 2025a), resulting in aug-
mented instances with noisy labels (Liu et al. 2023). Espe-
cially in regression problems whose labels are continuous
response targets, the noisy problem of mixup is ubiquitous.
For example, in image age estimation tasks, people of the
same age correspond to completely different images, where
the linear alignment assumption is clearly violated. Previ-
ous studies have shown that this noisy problem of mixup de-
grades regression performance and hurts the generalization
ability, even resulting in a U-shaped generalization curve
(Yao et al. 2022; Liu et al. 2023).

To solve the noisy problem of mixup in regression, we
propose an easy-to-implement method, namely DEnosing
MIXUP (DE-MIXUP). We take inspiration from the empir-
ical observations from both previous studies (Zhang et al.
2018; Verma et al. 2019; Baena, Drumetz, and Gripon 2022;
Yao et al. 2022) and our early experimental results, where
manifold mixup is superior to mixup for regression in most
cases. These indirectly imply that the noisy problem in the
deep feature space can be less significant than the one in the
original feature space. Upon this observation, we propose to
refine the noisy response targets caused by mixup with aug-



mented deep features. Specifically, we incorporate a noise
estimation layer to estimate the noise of mixup response
targets by leveraging the mixup deep features. We then fit
the regressor by using the refined response targets. Inspired
by (Gillberg et al. 2016), we treat the refined response tar-
gets and noises as trainable variables and propose an effi-
cient training method by applying the alternating direction
method of multipliers. We conduct extensive experiments to
compare DE-MIXUP with the existing mixup variants and
other prevalent data augmentation methods across bench-
mark regression datasets. Empirical results indicate the ef-
fectiveness of DE-MIXUP under the in-distribution and out-
of-distribution cases.

In a nutshell, the contributions of this paper are listed as
follows.

* We propose an easy-to-implement mixup-based method
for regression named DE-MIXUP with a denoising strat-
egy.

* We suggest an efficient training method by applying the
alternating direction method of multipliers.

* We conduct extensive experiments to validate the effec-
tiveness of DE-MIXUP under the in-distribution and out-
of-distribution cases.

Related Works
Mixup Augmentation

Mixup (Zhang et al. 2018) is a simple yet effective data aug-
mentation method that has inspired numerous subsequent
studies. For example, manifold mixup (Verma et al. 2019)
performs linear interpolation on the trainable deep features
in the hidden space; mixupE(Zou et al. 2023) approximates
the dominant term using results during forward propaga-
tion; k-mixup (Greenewald et al. 2021) generates more aug-
mented instances by perturbing two instance groups and
interpolating them using the Wasserstein distance; remix
(Chou et al. 2021) separates interpolation into label space
and input space. Additionally, cutmix (Yun et al. 2019) and
its variants (Venkataramanan et al. 2020; Hong, Choi, and
Kim 2021; Baek, Bang, and Shim 2021) perform mixup by
using nonlinear interpolation on images through cutting and
pasting patches; saliency-based methods (Kim, Choo, and
Song 2020; Uddin et al. 2021) further extract saliency fea-
tures to select meaningful pairs of mixed images.

Although mixup has been effectively applied in numer-
ous practical fields, adamixup (Guo, Mao, and Zhang 2019)
highlights considerable noise resulting from conflicts be-
tween the labels of augmented and original instances. Sim-
ilarly, sk-mixup (Bouniot, Mozharovskyi, and d’ Alché-Buc
2024) argues that the likelihood of label noise increases with
the distance between the mixed data. Therefore, local mixup
(Baena, Drumetz, and Gripon 2022) suggests reducing the
weight of distant input samples to alleviate label noise. No-
tably, c-mixup (Yao et al. 2022) proposes a more generalized
method using a Gaussian kernel to achieve selective interpo-
lation. Furthermore, metamixup (Mai et al. 2022) also intro-
duce meta-learning techniques to provide cleaner instances.
In contrast, DE-MIXUP adopts a post-processing strategy to
eliminate noise from augmented labels in regression.

Regression faces more significant challenges compared to
classification when using mixup, due to the continuous la-
bel space, which can result in arbitrarily-incorrect labels.
Regmix (Hwang and Whang 2021) utilizes reinforcement
learning to identify the most optimal neighboring samples
for mixup. Meanwhile, c-mixup (Yao et al. 2022) adjusts
the probabilities of mixup based on label similarity to re-
duce noise in regression tasks. Additionally, ada (Schneider,
Goshtasbpour, and Perez-Cruz 2023) and rc-mixup (Hwang,
Kim, and Whang 2024) are variants of c-mixup; the for-
mer enables interpolation based on cluster membership to
provide more training examples, while the latter introduces
multi-round robust training to preserve clean label patterns.
Notably, since label noise in regression is arbitrary, DE-
MIXUP incorporates a noise estimation layer to accurately
get the noise value of the augmented labels, thereby extend-
ing the mixup effectively to regression tasks.

Deep Regression

Deep learning has been extensively adopted for extract-
ing deep features, leading to more robust regression pre-
dictions. Deep regression effectively addresses real-world
challenges across various fields, including finance (Zhang,
Aggarwal, and Qi 2017), healthcare (de Vente et al. 2020),
and physics (Sial et al. 2020). However, real-world regres-
sion tasks are often affected by noisy response targets, pos-
ing significant challenges to the performance. To address
this, the superloss (Castells, Weinzaepfel, and Revaud 2020)
is designed to automatically downweight the contribution
of noisy “hard samples”. Especially for ordinal regression
problems, a novel method proposed by (Franchi et al. 2021)
handles class-conditional label noise. ConFrag (Kim et al.
2024) further improves the selection of clean samples by
training more discriminative representations (disjoint yet
contrastive fragments). DE-MIXUP focuses on the specific
label noise in regression tasks caused by mixup and aims
to provide a framework for promoting the adoption of more
effective data augmentation techniques in regression tasks.

DE-MIXUP for Regression

In this section, we introduce the proposed DEnosing
MIXUP (DE-MIXUP) method for regression problems.

Preliminaries

Notation of regression Let x € R? and y € R denote a
d-dimensional feature vector and a response target in regres-
sion problems, respectively. Given a collection of n labeled
instances {(x;,y;)} ., the goal of regression is to train a
regressor that can predict the response target for any future
instance. Generally, the regressor is composed of a deep fea-
ture encoder hg parameterized by ® and a regression layer
fw parameterized by W. The deep feature encoder is used
to transform any original feature to a more discriminative
deep feature z¥ = hg(x), where z% denotes a trainable
deep feature with respect to ®. The regression layer is used
to generate the prediction of response target fw (z%).
Formally, the generic objective of regression problems is



given as follows:
L(®,W) = l(fw (ha (x)),v:), 8
i=1
where £ can be any commonly used loss function for regres-
sion problems.

Mixup Itis a prevalent data augmentation method that lin-
early combines any instance pair to generate augmented in-
stances (Zhang et al. 2018). Typically, it randomly draws
two labeled instances (x;,y;) and (x;,y;) and then com-
bine them to generate an augmented instance (X;;,7;;) as
follows:

Xij = A + (L= A)x;, Uy = Ayi + (1= Ny,
A~ Beta(v,7), (2)

where Beta(v,~) denotes a pre-defined Beta distribution
used to instance the coefficient weight A.

Beyond the standard version, manifold mixup (Verma
et al. 2019) combines the trainable deep features rather than
the original features. For any labeled instance pair (x;,y;)
and (x;,y;), after transforming x;,x; to z; ,2; , it gener-
ates a latent trainable augmented instance (z?;,yij) as fol-
lows:

Z:'I; = /\Z:'I) + (1 - )\)Z;‘b, Uij = \yi + (1= N)y;

A ~ Beta(y,7),
(3)

Regression with mixup We briefly describe the stochas-
tic optimization process of regression with augmented in-
stances of mixup. At each iteration ¢, it randomly draws a
mini-batch Q) of n, labeled instances and then generates
np(ny — 1) augmented instances of mixup. Accordingly, the
stochastic objective can be formulated as follows:

Lin(®,W) = Z C(fw (ha (Xi5)) . i) B

i,jEQ®)

By analogy, the stochastic objective with augmented in-
stances of manifold mixup can be formulated as follows:

Lv(® W)= > ((fw(Z}).7) (5)

iJeQ(U

DE-MIXUP

Recalling Eqgs.(3) and (4), we note that the family of mixup
follows a linear alignment assumption between (deep) fea-
tures and response targets. That is, it supposes that the real
regressor is a linear mapping function. Unfortunately, this
assumption can be violated in many complex scenarios (Kou
et al. 2025b), so the response targets of augmented instances
of mixup are inevitably noisy to some extent. Several previ-
ous studies (Yao et al. 2022; Liu et al. 2023) have attracted
this noisy problem, and they have shown an interesting em-
pirical phenomenon that mixup and manifold mixup degrade
regression performance while manifold mixup is superior to
mixup in most cases; in our experiments, we have observed
similar results (see more results in Sections 4.2, 4.3). All

these empirical observations indirectly indicate the existence
of this noisy problem and, more significantly, they imply that
the noisy problem in manifold mixup can be less significant
than the one in mixup.

We take inspiration from this observation and refine the
noisy response targets caused by mixup with augmented
deep features. Specifically, we incorporate a noise estima-
tion layer gg parameterized by B, which is used to estimate
the noise of mixup response targets A;; by leveraging the
mixup deep features Z;I;. So the regression layer can be fit-
ted by using the refined response targets yi; = ¥;; — Aj.
Inspired by (Gillberg et al. 2016), we treat all y;; and A;; as
trainable variables and, referring to Eq.(4), we formulate the
following stochastic objective | pr of DE-MIXUP:

> (Ifw (he (=i5)) = wisl3

min
$,W,By® A®

,7€QM®
+lgm (25) = 23513) +alAD3
s.t. v =y + A®)] (6)

where ¥V, y(®) and A" denote the vector forms of all
Uij» Yij and A;; corresponding to augmented instances from
QO respectively; I - ||2 is ¢2 norm; and « is the regulariza-
tion coefficient. To avoid trivial solutions, we employ the /5
norm to constrain A ("),

By analogy, the stochastic objective of DE-MIXUP with
augmented instances of manifold mixup, dubbed DE-
MMIXUP, can be formulated as follows:

> (1w @5) = vl

min
®,W,B,y®H),A®)

i,7eQ®
+ llge (25) — Ai513) +all a3
s.t. 7 =y® 4 A® (7

Training For simplicity, we only introduce the training
process of Eq.(6) but omit the one of Eq.(7) because their
training processes are almost the same. As directly solv-
ing Eq.(6) is intractable, we apply the alternating direction
method of multipliers (Boyd et al. 2011), and convert Eq.(6)
into an augmented Lagrange problem with Lagrange param-
eter © as follows:

min E
®W.By"H AL ©
i,7EQ)

(Ilfw (he (i5)) = i 3

+ llgs (75) = A 13) +all A3

()]
+ IO -y - AL+ 2 @)
T
where 7 is the penalty parameter. we then optimize the vari-
ables of interest {®, W, B,y A®) @} by an alternating
fashion.
[Update {®, W,B}] When {y*), A®) @} are fixed, the
corresponding sub-objective can be reformulated as follows:
amin > (fw (ha () — i3

i,7E€QM)

+llgm (52) - 813) ©



we can update them directly using the stochastic gradient
method.

[Update y] When {® W, B,A®) @O} are fixed, the
sub-objective with respect to y(*) can be reformulated as fol-
lows:

min Y || fw (he (%ij)) — vis3

)
0]

T — (S}
+ 570 =y —al+ =5 a0

This is a convex optimization and its closed solution is
given below:

yV =@+ @2p? +ry" —ral @) A

where p(Y) denotes the vector form of all Dij =
fw (ha (Xi5)).

[Update A®)] When {®, W,B,y®) ©} are fixed, the
sub-objective with respect to A(®) can be reformulated as
follows:

min Z HgB(Z?;)

mir — Ayll3 + all AW 3
i,7€Q1)

T e ©
+ 57 =y = Al + =, (12)

This is a convex optimization and its closed solution is
given below:

AY = (247 +20)7 129 + 7Y — 7y® + @) (13)

where q*) denotes the vector form of all ¢;; = g (Z;;).
[Update ©] It can be directly updated by the following for-
mula:

@« 0+ 7(y?®+ Al _5®) (14)

Implementation We now introduce some training details.
First, referring to Eqs.(11) and (12), y*) and A® are es-
timated by predictions. To avoid inaccurate estimates in the
early training stages, we perform a warm-up stage with the
original labeled dataset {(x;,y;)}" ;. Then, for each mini-
batch, we perform an inner loop to estimate y(*) and A®).
For clarity, we summarize the training process of DE-MIXUP
in Algorithm 1.

Theoretical Analysis
Potential Noisy Pattern

Firstly, we find that there must be a certain noisy pattern
between augmented samples and the labels. Rewriting the
constraints related to the noise as follows:

Aij =Y —Yi (15)
where y;; = f *(i;), and f* represents the true regressor
corresponding to the samples and labels. This f* can be con-
sidered a “regressor pattern” that always exists. By substitut-
ing Eq. (2) into Eq. (15), we get:

Agj = Ay + (1= Ny; — f7(Az; + (1 = Nay)
=Af"(x) + (1 =N f(z;) = Oz + (1 — Nzj)

Algorithm 1: Training process of DE-MIXUP
Input: The labeled dataset {(x;,y:)}i=, and parameters {c, 7}
Ensure: An optimized regressor parameterized by &, W.

1: Initialize {W, B} randomly, and load a pre-trained deep fea-
ture encoder with @

2: Warm-up the regressor with {(x;, ¥:) }ie1

3: Fort =1t0 Ninner

4: Draw a mini-batch Q) of ny, labeled instances randomly
5: Generate augmented instances of mixup

6: Initialize y = 3®, A® =0

7: For ¢ = 1 to Ninner

8: Update y(t) using Eq.(11)

9: Update AW® using Eq.(13)

10: Update {®, W, B} using stochastic gradients
11: Update ©® using Eq.(14)

12: End For

13: End For

where A;; can be directly expressed using f*. Since f* al-
ways exists, it follows that A;; represents the “noise pat-
tern” that must exist and is predictable.

Furthermore, given an augmented training dataset D =
{(Z:,7;) -1, we will easily learn the model parameter W
using gradient descent on the square loss.

1 & - =
Rs(W) =~ |[W'e Y] a7
=1

where & = [h(71), ha(T2), ... ha(Ts)] € R and
Y = [4;,Us---,¥,] € R™ Then, we have the follow-
ing important lemma with a detailed proof provided in Ap-
pendix A.

Lemma 1 There exists ® = (@T)A@ that is the Moore-

Penrose inverse of & such that W* = ®Y* wherein
Y* = [yf v,y € R" and B* = ®A wherein
A =[A1, Ay, ..., A;] € R™ It’s natural to have the fol-
lowing closed form solution with learning rate e.

W, —W* = (W, —W*)e_%‘m)Tt (I _6—%@‘55)]3*.

(18)
Remark 1 Here, W* and B* represent the optimal param-
eters for the prediction functions fw and gg with square
loss, respectively. Notably, the first term can be seen as
the description of “regressor pattern” mentioned previously.
The model parameters W converge to the regressor pattern
W* as t increases. The second term clearly demonstrates
that the optimal parameters related to the noise pattern ex-
ist and can be learned through the deep features. This high-
lights the effectiveness of incorporating a noise estimation
layer g, parameterized by B with square loss to estimate
the noise, as shown in Eq. (6).

Error Bound

We will provide a boundary error analysis using DE-MIXUP.
The square loss function Ls(-,-) is a common Lipschitz
function, and assuming there exists a constant C; such that
|L2(+,)] < C;. Additionally, the risk estimator of DE-
MMIXUP can be expressed as follows:

Rok (fw,98) = Epzg e (fw (®).7)] (19)



Dataset Size Dimension Type

Airfoil 1,503 5 Tabular

NO2 500 7 Tabular

Bike 17,379 16 Tabular
In-distribution Exchange-Rate 7,588 322 Time-series
Electricity 26,304 6 Time-series

Age 16,488 - Image

UTKface 24,106 — Image

RCF-MNIST 60,000 3x28x28 Image

Out-of-distribution SkillCraft 3,395 20 Tabular

Crime 306,094 16 Tabular

Table 1: Detailed information of datasets. — indicates that
the sample feature dimensions are not uniform.

Furthermore, Rpg (fw, gB) donate the empirical estima-
tor of Rpg (fw, gB). Let fw = argmin sy er Rpe(fw,
gB) and*gB = arg mingBeg RDE(fw, gB)- Addition-
ally, fw"* = argming,cr Roe(fw,gs) and gg* =
argming, cg Rm(fw, gB), where F and G are two in-
dependent hypothesis classes of the function. R,, (F) and
R, (G) denote the Rademacher complexity of augmented
data with size n, respectively. Then we have the following
theorem.

Theorem 1 Given a augmented dataset D = {(Z;,7;)}._,,
and Ly is an p — lipschitz function and is bounded by some
constant C; > 0. For any § > 0, with the probability at least
1 — 6, the following holds for all fw € F and gg € G.

RpEr (fw7§B) < Rpe (fw",98") + (4o + 4) pR,. (F)

log2
+4pRa(G) + 20| S0 (20)

The detailed proof is available in the Appendix B. The theo-
rem 1 shows that the risk estimator Rpg on the augmented

dataset D is bounded by the risk of regressor and noise esti-
mation layer from L5. And as n — 0o, Rpg (fw, §B> —

Rpe (fw”, gB*), the overall convergence rate is character-
ized by O (\/% )

Experiment
Experimental Settings

Datasets We evaluate the regression performance of DE-
MIXUP under the in-distribution cases on 7 datasets, in-
cluding tabular datasets, time-series datasets, and image
datasets. The Airfoil dataset (Kooperberg 1997) includes
aerodynamic and acoustic test results from airfoil blade sec-
tions in a wind tunnel. The NO2 emissions dataset (NO2)
(Kooperberg 1997) is often used to predict th mount of
air pollution at specific locations. The bike sharing dataset
(Bike) (Fanaee-T and Gama 2014) records two years of bike
rental counts in different environments. The Exchange-Rate
dataset (Lai et al. 2018) contains daily exchange rates from
eight countries, and the Electricity dataset (Lai et al. 2018)
records electricity consumption from 321 customers. The
AgeDB-DIR (Age) (Moschoglou et al. 2017) dataset and
UTKface (Zhang, Song, and Qi 2017) are both used to train

models for predicting an individual’s age based on facial im-
age features.

Additionally, we evaluate the generalization ability of
DE-MIXUP under the out-of-distribution cases on 3
datasets. The RCFashion-MNIST (RCF-MNIST) (Yao et al.
2022) simulates distribution changes by reversing the spu-
rious correlation between color and angle. The SkillCraft
dataset (Blair et al. 2013) is used to train a model for predict-
ing the Leaguelndex based on players’ behavioral character-
istics. The Crime dataset (Redmond 2009) contains a total
of socio-economic and crime data from multiple communi-
ties. Its purpose is to predict violent crime rates per 1,000
population in unseen neighborhoods.

For clarity, we summarize the characteristics of datasets
in Table 1.

Baselines We mainly compare DE-MIXUP with the com-
monly used mixup family methods and several modality-
specific data augmentation methods. Specifically, the mixup
family methods include mixup (Zhang et al. 2018), local
mixup (Baena, Drumetz, and Gripon 2022), noisy-mixup
(Lim et al. 2022), manifold mixup (mani mixup) (Verma
et al. 2019), fair-mixup (Chuang and Mroueh 2021), mix-
upE (Zou et al. 2023), k-mixup (Greenewald et al. 2021),
sk-mixup (Bouniot, Mozharovskyi, and d’ Alché-Buc 2024),
and c-mixup (Yao et al. 2022). Modality-specific methods
include switchtab and vime for tabular data, time-warping
and rotation for time-series data, and flipping, mask, and
rotation for image data. Additionally for out-of-distribution
cases, we employ 4 invariant learning methods, including
IRM (Arjovsky et al. 2019), V-REx (Krueger et al. 2021),
CORAL (Li et al. 2018b), and MLDG (Li et al. 2018a).

Implementation details We employ different deep fea-
ture encoders for different types of datasets, i.e., a three-
layer fully connected network for tabular datasets, the deep
feature encoder of LST-Attn (Lai et al. 2018) for time-series
datasets, and a pre-trained ResNet101! for image datasets.
Additionally, we employ a single-layer fully connected net-
work as the regression layer. During model training, we ap-
ply the Adam optimizer and the mean square error as the
loss function. The batch size is fixed to 32.

For DE-MIXUP and DE-MMIXUP, we employ a single-
layer fully connected network as the noise estimation layer.
We warm-up DE-MIXUP and DE-MMIXUP with 50 epochs.

Evaluation metrics In the experiments, we measure the
regression performance using Root Mean Square Error
(RMSE) and Mean Absolute Percentage Error (MAPE),
where lower values indicate better performance. RMSE

and MAPE are defined as (\/% S (yr —pi)?) and
(A, |4

ground-truth response target.

7 x 100), respectively, where y* denotes the

Results under the In-distribution Cases

We present the empirical results for RMSE under the in-
distribution cases in Table 2 and for MAPE in Table 4 (Ap-

"https://download.pytorch.org/models/



Exchange-Rate

Electricity

Age

UTKface

0.216 +£0.039  0.0206 & 0.004  0.057 £ 0.0004

13.778 £0.013

11.907 £0.189

Modality-specific data augmentation strategies

0.0205 £ 0.002
0.0889 £ 0.012

0.076 £+ 0.0015
0.119 4+ 0.0078

13.879 £ 0.038
13.726 £ 0.006
13.857 £ 0.018

11.892 £ 0.229
11.633 £ 0.095
11.679 £0.103

Mixup family strategies

0.0208 £ 0.005
0.0330 £ 0.004
0.0333 £ 0.006
0.0235 £ 0.006
0.0629 £ 0.037
0.0200 £ 0.005
0.0181 £ 0.002
0.0221 4 0.001
0.0199 £ 0.008

0.058 £+ 0.0015
0.077 £ 0.0005
0.081 £ 0.0007
0.057 £ 0.0007
0.066 £ 0.0003
0.059 £ 0.0015
0.093 £+ 0.0130
0.069 £ 0.0006
0.057 £ 0.0064

13.873 £ 0.006
14.253 £ 0.075
14.587 £ 0.027
13.856 £ 0.012
13.673 £0.044
13.940 £ 0.073
14.626 + 0.066
13.774 £ 0.039
13.888 £0.025

11.827 £ 0.125
12.638 £0.034
11.897 £0.101
11.872 £ 0.040
11.771 £0.101
11.959 £ 0.035
13.603 £ 0.089
11.882 £0.163
12.016 £ 0.068

Method Airfoil NO2 Bike
benchmark 2.867 +0.239 0.522 £ 0.001
+ switchtab 4.381 +£0.459 0.586 £+ 0.006  0.855 £ 0.063
+ vime 2.749 £0.002 0.522+£0.001 0.971+0.094
+ time-warping - — -
+ rotation - - -
+ flipping - - -
+ mask — — —
+ mixup 3.761+£0.194 0.5154+0.006 0.496 + 0.080
+ local mixup 4.165 +£0.329  0.523 £0.005 0.511 £ 0.047
+ noisy-mixup 4.681 +£0.085 0.557 £0.010 0.827 £ 0.269
+ mani mixup 3.056 £0.216 0.522£0.015 0.289 £ 0.025
+ fair-mixup 2.917£0.095 0.517£0.011 0.241+£0.015
+ mixupE 3.7754+£0.102 0.522+0.010 0.453 +£0.133
+ k-mixup 2961 +£0.226 0.518 +£0.001  0.259 4+ 0.011
+ sk-mixup 2.807£0.162 0.544 £0.021 0.166 £ 0.009
+ c-mixup 2.795+£0.173 0.513+£0.012 0.214 £ 0.007
+ DE-MIXUP (Ours) 3.070 £0.184 0.508 £0.014 0.217 £ 0.006
+ DE-MMIXUP (Ours) 2.332+0.127 0.498 + 0.008 0.141 £ 0.007

12.131 £0.072
11.564 £+ 0.061

0.0148 £ 0.005
0.0142 £+ 0.003

0.059 £ 0.0057
0.056 £+ 0.0043

13.739 £ 0.031
13.662 + 0.019

Table 2: Results of the average RMSE for three seeds under the in-distribution cases. “Benchmark” is the version without any
data augmentation strategies. The best scores are indicated in bold.

pendix C). It can be significantly observed that our DE-
MMIXUP performs significantly better than all methods, and
DE-MIXUP also shows reliable performance. Specifically,
DE-MMIXUP has a significant advantage over benchmark.
For example, its RMSE decreases from 2.867 to 2.332, and
its MAPE reduces from 1.723 to 1.450 on the Airfoil dataset.
The results demonstrate that DE-MMIXUP achieves effec-
tive estimation of noise and thus ensures cleaner augmented
data for the regression model. Meanwhile, DE-MMIXUP
outperforms modality-specific data augmentation strategies,
particularly on the Exchange-Rate and Electricity time-
series datasets. For example, DE-MMIXUP reduces RMSE
by 31.1% and MAPE by 39.3% on the Exchange-Rate
dataset compared to time-warping. Additionally, modality-
specific data augmentation strategies often perform worse
than the benchmark, closely related to the noise inevitably
introduced during the augmentation process.

Encouragingly, DE-MMIXUP also achieves better results
compared to mixup and its variants. In particular, DE-
MMIXUP outperforms the competitive c-mixup, reducing
RMSE from 13.888 to 13.662 and MAPE from 32.147 to
31.638 on the Age dataset. This is because DE-MMIXUP of-
fers a novel approach to eliminating noise from augmented
labels by directly estimating them after applying mixup.
This strategy reduces the impact of noisy labels on the model
while preserving the diversity of augmented instances. Fi-
nally, it is worth noting that mixup and its simple variants are
less effective and perform worse than the benchmark on all
datasets. This underperformance is primarily due to mixup
relying on the linear alignment assumption to generate aug-
mented data, which introduces considerable noise (see more
analysis in Sections 3.2). Furthermore, some mixup variants
exhibit varying degrees of improvement. For example, mani-
mixup enhances local linearity of the regression relationship
by interpolating features at the hidden layer, thus effectively
reducing noise in the augmented data.

Results under the Out-of-distribution Cases

We present the empirical results under the out-of-
distribution cases in Table 3. DE-MMIXUP has the best per-
formance, while DE-MIXUP also achieves competitive re-
sults. Compared to benchmark DE-MMIXUP has a signifi-
cant improvement across all datasets. The RMSE and MAPE
on the Crime dataset decreases from 0.143 to 0.130 and from
81.014 to 76.466. These improvements can be attributed to
data augmentation, which provides a variety of samples for
the regression model.

In comparison to invariant learning methods, DE-
MMIXUP achieves greater advantages. For instance, it shows
9.04% and 4.75% improvements in RMSE and MAPE on
the RCF-MNIST dataset compared to the V-REx method.
Invariant learning methods extract key features from sam-
ples to achieve effective inference for unseen samples and
are widely used in classification problems. However, the
continuous labeling space in regression makes it more dif-
ficult to extract key features across samples, and relying
solely on partial salient feature information often fails to
ensure effective knowledge transfer for label prediction. In
contrast, DE-MMIXUP effectively generates unseen out-of-
distribution features by augmenting the dataset, which sig-
nificantly improves the model’s generalization ability.

Finally, our method has the best performance compared
to mixup and its variants, with RMSE decreasing from 5.813
to 5.571 on SkillCraft dataset compared to c-mixup. Since c-
mixup uses the Gaussian kernel to select samples with sim-
ilar labels for augmentation, it severely reduces the diver-
sity of the augmented samples. This limitation hampers the
robustness of the regression model when faced with out-of-
distribution cases.

Parameter Analysis

We evaluated the effect of the regularization coefficient «
and the number of inner loops on the model, as shown in



RCF-MNIST SkillCraft Crime
RMSE MAPE RMSE MAPE RMSE MAPE
benchmark 0.163 £0.012 742.010 £31.413 6.256 +0.124 10.729 £0.329 0.143 +£0.0029  81.014 + 4.251
Invariant learning methods
+ IRM 0.161 +£0.004 750.672 £34.162 8.662+0.161 9.976 +£0.484  0.1324+0.0041 84.623 + 13.884
+ V-REx 0.166 £0.002 761.387 £35.096 9.785+0.640 17.973+1.425 0.131+£0.0048 88.904 £ 8.655
+ CORAL 0.158 £0.002 711.323+30.390 6.073+0.197 10.348 +£0.271 0.130 £ 0.0043 87.668 + 10.906
+ MLDG 0.163 £0.003 737.811+27.856 8.023 +£0.278 10.615+ 0.461 0.133 £0.0052  83.594 4+ 9.434
Mixup family strategies
+ mixup 0.163 £0.002 821.317+36.906 6.187 +0.253 10.887 +0.444 0.130 £0.0024  74.353 £+ 6.743
+ local mixup 0.181 £0.015 779.445 £25.978 6.372+0.546 11.551 £1.329 0.137+£0.0019  84.140 + 7.614
+ noisy-mixup 0.161 £0.014 767.049 £27.816 8.473+0.551 17.183+1.337 0.138£0.0004 88.170 £ 1.066
+ mani mixup 0.161 £0.013  674.194 +24.423 6.010 £0.165 10.318 £0.406 0.131 £0.0031  86.414 +5.134
+ fair mixup 0.164 £0.010 728.415+28.117 6.1834+0.145 10.610+0.277 0.130 £ 0.0009  95.754 4+ 8.996
+ mixupE 0.169 £0.017 776.832+30.214 6.704 +£0.162 11.808 +0.374 0.130£0.0011  73.966 + 3.461
+ k-mixup 0.207 £0.023  730.001 £ 28.564  6.206 +0.591  14.363 £3.402 0.156 +0.0241  79.509 + 3.072
+ sk-mixup 0.174 £0.011 702.684 +£31.351 6.529 £0.154 11.362+0.475 0.131 £ 0.0007  86.726 +4.127
+ c-mixup 0.159 +£0.009 679.221 +27.451 5.8134+0.124 9.991 + 0.270 0.132 + 0.0081 78.871 £ 7.496
+ DE-Mixup (Ours) 0.157 £0.010 751.643 +£34.823 5.776 £0.137  9.961 £0.311  0.136 £0.0073  75.291 £+ 4.823
+ DE-MMIXUP (Ours) 0.151 +0.007 725.236 £23.427 5.571+£0.099 9.780 £ 0.294  0.130 + 0.0076  76.466 + 6.845

Table 3: Results of the average RMSE and MAPE for three seeds under the out-of-distribution cases. “Benchmark” is the
version without any data augmentation strategies. The best scores are indicated in bold.
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Figure 1: DE-MMIXUP performance when varying the regularization factor o and the number of inner loops N, per-

Figure 1. Initially, the DE-MMIXUP’s performance improves
as « increases, demonstrating its effectiveness in correct-
ing noise. However, when o becomes too large, it disrupts
the model’s noise estimation, leading to a decline in perfor-
mance. The best results were obtained with « values of 0.1
and 0.01 for the Airfoil and Age datasets, respectively.
Additionally, as the number of inner loops increased, the
model’s performance improved on both datasets. This in-
dicates that DE-MMIXUP can more effectively learn the
noise between true labels and augmented labels over multi-
ple loops, thereby efficiently correcting noise and preventing
the regression model from overfitting to noisy instances. It
is worth noting that after a certain number of iterations, the
performance improvement of DE-MMIXUP on both datasets
is not significant. Therefore, to balance model efficiency
and performance, we selected 2 and 3 inner loops for DE-
MMIXUP on the airfoil and age datasets, respectively.

Ablation Study

We will evaluate the impact of the noise estimation layer and
the manifold mixup operation on the performance of DE-

MMIXUP. The specific results are presented in Tables 2 to
4, comparing mixup with DE-MIXUP and DE-MIXUP with
DE-MMIXUP, respectively. The results clearly show that the
noise estimation layer effectively reduces augmented label
noise. Additionally, the manifold mixup operation further
regularizes the augmented samples, and both components
contribute to improving the performance of regressor.

Conclusion

In this paper, we focus on label noise caused by mixup in
regression tasks and propose a novel method called DE-
MIXUP (DE-MMIXUP), which leverages an auxiliary noise
estimation task to correct it. We conduct extensive experi-
ments under both the in-distribution and out-of-distribution
cases, showing that DE-MIXUP and DE-MMIXUP signifi-
cantly outperform mixup and its variants, modality-specific
data augmentation strategies, and invariant learning meth-
ods. The results demonstrate that our methods can not only
accurately estimate noise but also provide clean instances for
training the regressor, thereby enhancing the model’s stabil-
ity and robustness across different scenarios.
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